
.flD-Fl148 341 A NODULAR INTRODUCTION TO RDH(U) BROWN UNIV PROVIDENCE 1/1
[RI P WEGNER 18 OCT 83 Neee4-78-C-0656

UNCLRSSWDF/9/2 NL

EMhhhmhlEEE7hhhEmohEmhhhhmhEEI
mEmmhEmmhEEE

1 0111 U& 128 3 2.5

13.2 "

Il-jfL6

MICROCOPY RESOLUTION TEST CHART

N~ATIONAL BUREAU Oll STANARS -963-A

;" .-~cl~ 'i

A Modular Introduction to Ada *

Peter Wegner, Brown University ,. -

-2 This modular introduction to Ada includes seven instruction units each con-
sisting of a sequence of frames,

* Lexical Elements (8 frames)"
Syntactic Notation (4 Frames),,

(S) Expressions, Statements, and Declarations (7 frames))
* Introduction to Types (7 frames),

Control Structures (8 frames)
Arrays (6 frames),

(7 Subprograms and Parameter Passing (7 frames).

2It provides an introduction to low-level Ada concepts that can serve as a
foundation for the study of higher-level concepts such as packages and tasks. It
complements top-down Introductions to Ada .. a.h ... and can be
used for self study prior o taking a course on Ada. Its style Is tht of the Self-
Assessment Procedure [2Tj Fut it Is more elementary. Its discussion of Ada syntax
and semantics is a useful preliminary to reading the Ada Reference Manual.-2

- ')Each instruction unit consists of a concept map followed by a sequence of L
frames. The concept map serves as a specification of the instruction unit, stating

00 its purpose and Indicating the logical relation among the concepts it introduces. It
w " plays a dual role as a preliminary overview for students and a guide to authors In

the design and implementation of the unit.

The development of this mateial was motivated]?y the desire to explore a -
new writing style appropriate for "computer textbooks'. We hope eventually to
expand this material into a computer-managed, educatIra database with hun-

~ dreds of frames, multiple entry points, and multiple m .es of traversal, so that it
can be used by students with different backgrounds and ltes of learning. Pro- *- ..

grams will eventually be under the control of an Ada con piler so the user can
interact with them on line. The educational database could ventually be part of
an Ada environment that supports both lerning and substan ve application pro-
gramming. -

Review of this material by Richard Bolz and his students at the Air Force
Academy, and by students in the author's programming language class resulted in
many improvements. Readers' comments and suggestions for further improve-
ment and expansion of this material will be welcomed.

" [1] Booch Grady, Software Engineering in Ada, Benjamin Cummings, 1982.

[] Wegner Peter, Ada Self-Assessment Procedure, Communications of the ACM,
Lj October 1981.

" S This work was supported in part by the Ada Joint Program Office through ONR
contractN, 0014-78C-0656.". %,

-; LDTIC
E LECTE :.

NOV 2 71984

0' DRAFT, 10OOto~hr 1983

"his document has been apprve
for public release and sale; its [

"'. . * .'. distributPn is unlimited.

,- '- '..--,v . ,...".. . -"--.-.,. --. 2. : ..''.-: ''. ': '-.-'-.-..-... .',.-.-.-,.-. .-. .'..'-. .,".....'.,.-"-.. .-.-. ,. .---. .- :.: i -

a p

Table of Contents (Frames in Each Instruction Unit)

Unit 1: Lexical Elements
1.0. Warming-Up Exercise p
Concept Map for Lexical Elements
1.1. The Ada Character Set
1.2. Lexical Elements and Separators .--.
1.3. Identifiers
1.4. Numeric Literals ..-..
1.5. Character and Striug Literals
1.6. Comments
8 1.7. Positional Number Representation
8 1.8. Based Literals

Unit 2: Syntactic Notation
Concept Map for Syntactic Definition
2.1. Productions which Name Sets of Characters
2.2. The Concatenation Operator
2.3. The Syntax of Integers and Identifiers
'2.4. The Syntax of Numeric Literals

Unit 3: Expressions, Statements, and Declarations
Concept Map
3.1. Integer-Valued Expressions
3.2. Expressions with Variables
3.3. Assignment Statements and Memory Cells
3.4. Object Declarations
3.5. Blocks with Local Variables
3.6. Parameterless Procedures L
3.7. Review of Declarations and Statements

Unit 4: introduction to Types
Concept Map
4.1. Floating Point Types
4.2. Boolean Types
4.3. Relational Expressions
4.4. Programmer-Defined Types
4.5. Enumeration Types
4.6. Scalar Types and their Attributes
4.7. Discrete Types and their Attributes

Unit 5: Control Structures
Concept Map
6.1. Sequences of Actions
6.2. If Statements
6.3. General Form of the If Statement
6.4. The Loop Statement
6.6. The For Statement
6.6. Functions with Parameters
5.7. Discrete Ranges
5.8. Syntax of For Statements

6.8. Syntax

'Starred sections may be omitted on first reading

ODRAM~ 10 October 1953

r 11

Unit 6: Arroyo
Concept Map
6.1. Introduction to Arrays

* 6.2. Type and Object Declarations for Arrays
6.3. Array Attributes

* 6.4. index Ranges and Enumeration Types
* 6.5. Aggregates, Slices, and Complete arrays

6.6. Unconstrained Array Types

* Unit 7: Subprograms and Parameter Passing
Concept Map
7. 1. Function for Summing Vectors
7.2. Procedure for Summing Vectors
7.3. Parameter Mode
7.4. Computing the Maximum
7.5. Maximum Index of Arrays and Slices
7.6. Sorting by Successive Maxima
7.7. Syntax of Functions and Procedures

()DAPTP: 1OCI.r 1003

* *.* ~ * - * % ** ** .

4

1.0. Warming-Up Exercise
Ada is a programming language developed at the Initiative of the Department

of Defense for writing large application programs.

Its modular programming facilities are richer than those of Fortran or Pascal,
so that large programs may be systematically constructed out of modular corn-
ponents. . "

But its expressions and statements are similar to those of Fortran, and its sub-
program and datatype mechanisms are similar to those of Pascal.

Thus the reader familiar with Fortran or Pascal should have no difficulty In
understanding corresponding features of Ada.

Programs in Ada are represented by character strings over an alphabet that
Includes letters, digits, and punctuation symbols. Characters may be combined
into lexical elements of the following kinds: .

Example 1: Lexical Elements of Ada

Identifiers such as X, ALPHA, which serve as names of program entities.
literals such as 3, 3.8, which represent values.
delimiters, which include operators, punctuation symbols, and parentheses. P
comments, which serve to document the program.

Lexical elements are the atomic program constituents of Ada. They can be
combined to form expressions, statements, and other program structures.

"X + 3" Is an expression consisting of the identifier "X", followed by the operator
" " followed by the literal "3".

"BETA :z ALPHA + 365;" is an assignment statement which assigns the value of -.

the expression "ALPHA + 365" to the identifier BETA.

In order to write Ada programs we must understand the rules for construct-
Ing programs out of component character strings.

The rules for building program structures from component character strings
are called rules of syntax, while the rules for determining the result of program
execution are called rules of semantics. We shall be concerned with both the
syntax and the semantics of Ada programs.

Example: The syntax of expressions are the rules that determine how expressions ' '
are constructed from constituents. The semantics of expressions are the rules that
determine how expressions are evaluated.

Which of the following assertions are false?
a) Ada supports a richer set of program modules than Fortran
b) Lexical elements are the atomic program constituents of Ada.
c) Expressions may include identifiers, literals, and delimiters.
d) Rules for building program structures out of character strings are called rules
of semantics.
e) Rules of expression evaluation are rules of semantics.

()DRAPM, 10 October 183"

117 -

.
.-' * .. *.*.t *.*. .* * ~ * *~ . - * . ..

6 ! .

Concept Map for Unit 1: Lexical Elements

The purpose of this Instruction unit is to classify and describe the lexical ele-
ments out of which Ada programs are constructed. The relation among the vari-
ous classes of lexical elements of Ada is Indicated by the following concept map.

.':" /f~t-he Ad-a character ser ":'2

idifiers literals delimiters comnt s

L
VostioalNumber Representation

"bse terals

Figure 1: Concept Map for Lexical elements

This concept map serves as a guide to the development of the set of frames in
the present instruction unit.

The first frame enumerates the Ada characters, and classifies them into subc-
lasses such as digits, letters, and special characters.

In the second frame we examine a line of Ada code that contains identifiers,
literals, delimiters, and comments.

The syntactic form and semantic role of identifiers, literals, delimiters, and
comments is discussed in detail In subsequent frames.

As is evident from the concept map, literals are discussed in greater detail
than other classes of lexical elements.

Subclasses of literals are defined, including numeric, character, and string
literals. Numeric literals are further subdivided into Integer Iterals and real
literals.

The material on number representations and based literals is starred to indi-
cate its greater level of difficulty. It is represented in the body of the instruction
unit by two starred frames that may be omitted on first reading.

Note: A concept map represents static logical relations among concepts. The associ-
ated sequence of frames describes the concepts of the concept map dynamnically.
The order in which concepts are Introduced does not necessarily correspond to a
top-down traversal of the concept map, and the correspondence between frames
and nodes of the concept map is not necessarily one-to -one.

O DRAM 10 000*or 19-3

6

1.1. The Ada Character Set
The Ada character set has 95 characters, including 62 upper and lower case

letters, 10 digits, and the space character. In addition, there are 32 special charac-
ters that Include operator symbols such as "W", parenthesis symbols such as "(",
and punctuation symbols such as ";".

Example 2: The Ada Character Set

upper-case letters:

ABCDEFGHIJKLMNOPQRSTUVWXY

lower-case letters:
abcdefghlJklmnopqrstuvwxyz

digits:
0123456789

the space character

special characters:
~#&'()* , -./:;<=m> -t :

This character set is the standard ASCII character set of the American National
Standards Institute (ANSI), and is used for most current programming languages.

We shall consider both the syntactic rules for building program structures
over this character set, and the semantic rules for associating meanings with pro-
gram constituents.

In Ada the atomic program constituents are called lexical elements and

include Identifiers such as "ALPHA", literals such as "3865", and delimiters such as
".+ or ..1". .

Identifiers, literals and delimiters can be combined into expressions such as
"ALPHA+365" that determine rules for computing a value, and assignment state-
ments such as "BETA:sALPHA+365;" that record the value of expressions for later
use.

I

Note on standards and standards organizations:
The American National Standards Institute (ANSI) and the International Standards
Organization (ISO) promulgate standards for both character sets and programming
languages. ASCII, which stands for "American Standard Code for Information
Interchange", is the standard Ada character set. Ada became an approved ANSI
standard language in February 1983, and will be considered for ISO standardize-
tion in the next year or two.

Which of the following assertions are false?
a) The character string "Melissa" contains seven letters.
b) Ada programs are composed of sequences of characters over the Ada alphabet.
c) The special characters of Ada include four styles of matching parentheses.
d) The character string "8.1416" contains five characters.
a) ASCII and Ada we ANSI standards.

A 0t&.. Ob 1983

7

1.2. Lexical Elements and Separators
The line of Ada text In the example below consists of seven lexical elements.

Two are Identifiers, one is a literal, three are delimiters, and one is a comment.

Example 3: Identifiers, Literals, Comments, and Delimiters

X := X + 1; -- add 1 to current value of X

The seven lexical elements in this line include:
The identifier "X"
The delimiter ":W"
A second Instance of "X"
The delimiter ""
The literal "1"
The delimiter ";"
The comment "-- add I to current value of X"

This line of Ada text Includes space characters between its lexical elements.
The space character is an example of a separator. The text of a program consists
of a sequence of lexical elements and separators. But the effect of a program does
not depend on its separators or comments but only on its identifiers, literals and
delimiters.

The sequence of characters "X:xX+I;" with no spaces between lexical ele-
ments and no comments, has the same effect as the line of text in our example...

Our line of text is terminated by an (invisible) end of line symbol. The end
- of line symbol Is an example of a format effector. Format effectors are separators

which which have no external representation but are represented Internally by a
character code. They have an effect on the format of the output text rather than
being preserved as characters in the output representation.

Separators and comments are designed to improve the appearance and reada-
bility of a program rather than affect the computational task It performs. We
shall see later that readability is vitally important in determining the quality and
costs of programming and cannot be Ignored by the programmer. In writing a
program we are concerned not only with communicating a sequence of instruc-
tions to the computer but also with communicating the structure and purpose of
the program to humans who wish to debug or modify it. The fact that programs
must be designed for communication with humans as well as computers has a pro-
found impact on the task of programming.

Which of the following assertions are false?

a) The text of a program consists of a sequence of lexical elements and separators.
b) The effect of a program depends only on its lexical elements.

* c) Extra spaces between lexical elements may change a program's effect.
d) Format effectors are separators which affect a program's output format.
e) Programs should be designed for communication with humans as well as com-
puters.

QDAPM 10 October 1983

...................... .,.,•..,-.,: -..
4. % ." -. ." 'o . " . . " .' ." ." " .. .

8

1.3 Identifiers
Identifiers are represented by a string of one or more characters the first of

which is a letter. The remaining characters, if any, may be letters or digits, as in
X, X53. Isolated underscores may occur within identifiers to improve readability.
Ada does not distinguish between upper- and lower-case letters in identifiers, so
that X53 and x53 are always equivalent names for the same entity.

Identifiers serve as names of variables, procedures, types, or other entities.
They should be chosen so that the name suggests the intended use.

Example 4: Examples of Identifiers

X -- name for mathematical variable
LINE-COUNT -- name for counting lines In a text editor m.
SORT -- Identifier used to denote square root function
INTEGER -- identifier that denotes a predefined type
If begin loop -- three reserved identifiers separated by space symbols

Variables such as X are programmer-defined identifiers, and must be expli-
citly declared before they can be used for purposes of computation.

Programmer-defined identifiers may be contrasted with predefined Identif-
lers that provide facilities on which the programmer can rely without having to
define them. The predefined identifiers of Ada include the reserved Identifiers.

Reserved identifiers serve to define primitive language constructs for pur-
poses such as conditional branching, iteration, and program structuring. Ada has
63 reserved identifiers including If, loop, begin, procedure with a fixed
language-defined meaning that cannot be redefined by the programmer.

Identifiers such as INTEGER have a predefined meaning which may be
changed if there is good reason to do so. INTEGER determines properties of integers
such as their maximum size which may require redefinition when there is a p
change in the computer word size for integers.

Identifiers such as SORT, which are defined as subprograms of a program
library, have a status between that of programmer-defined and predefined iden-
tifiers. They are programmer-defined identifiers from the point of view of the
programmer who defines the library program but predefined from the point of
view of the user of the library program.

Identifiers may be viewed as names of computational resources, including
data resources such as variables and program resources such as procedures.
Predefined identifiers name resources provided by the language, programmer-
defined identifiers name resources defined by the programmer, and library iden-
tifiers name resources provided by the program library.

Wlich of the following assertions are false?
a) The first character of an identifier must be a letter.
b) The identifiers XYZ and xyz always denote the same entity.
c) Programmer-defined identifiers must be declared before they can be used.
d) Predefined identifiers cannot be redefined by the user.
e) Reserved identifiers denote language-defined computational resources.

()DRAPT 10 October 1983

.,

7, 7

1.4. Numeric Literals-
Literals are lexical units that represent a value. Numeric iterals represent

numeric values. The numeric values representable in Ada include Integers, which
are exact values, and real numbers, which are approximate values.

Figue 2 Exct n prxt umeric Literals

Exaple5: nteger Literals (represnt exacti vales
S ~~ ~ ~ ap e- 1erset thuItgesfv

Figur 2: Exave handAroixteNmrcLtrl

numeric..O par vosst falseuenc diis osil mepllteon, underscores.ipoeredb

Eanmeri valuteer mayineal genraerereenat ved s)mn deetasb

auei lierl.preseO...0 ns th ae twoe diferetwy frpeetn h

Inte0er vaone milin by ailin literal.Imrveredailt

Real literals, like integer literals, consist of a numeric par optionally fol-
lowed by an exponent. They contain a decimal point iu their nun 4ic part.

Example 6: Real Literals (represent approximate values)

0.6 - one half
0.0 -zero

* 3.1418 - approximate value of pi
1000.0 -- one thousand
1.0E3 -- positive exponent, value 1000.0
I .OE-3 -- negative exponent, value .001

Which of the following assertions are false?

a) 1-D..000-D0-00 represents the integer one billion.
b) 1 .OEO represents the real number one billion.
c) An Integer is an exact value and a real number is an approximate value.
d) 1.OE-4 is less than 1.OE-5.
e) Underscores are significant in Identifiers but not in numeric literals.

()DRAPT: 10 OC9ber 1983

10

1.6. Character and String Uterals

A character literal Is represented by a character In single quotes.

Example 7: Character Literals

a -- the character literal a
' ' -- the character literal +

a -- the character literal'

A string literal is represented by a string of zero or more characters in double
quotes. The number of characters in a string literal is said to be its length.

The double quote symbol cannot normally appear within a string since it is
Interpreted as the string terminator. In order to get around this restriction we
represent ocurrences of " within a string by two double quote symbols.

Example 8: String Literals

"a" -- the string literal a of length one
"ABC" -- the string literal ABC of length three

-- the empty string of length zero
A -- the string literal "A" of length three

The character literal 'a' and the string literal "a" of length one are not
equivalent. Character and string literals represent values of different types.

Small and capital letters are not equivalent within a quoted string. Thus 'a'
and 'A' are not equivalent. Likewise "ABC" and "abc" are not equivalent, although
the strings ABC and abc are equivalent as identifiers.

Note that there Is essentially only one way of representing a character string
by a string literal. This contrasts with the multiplicity of ways of representing
numbers by numeric literals.

Which of the following assertions are false?

a) 'x' and 'X' are two different character literals.
b) "x" and "X" are two different string literals.
c) John represents the literal "John".
d) "I think therefore I am" is a string literal with 18 characters.
e) Character values have a unique external representation as character literals,
while numeric values may be represented by a variety of different equivalent
-umeric literals.

P ().DRAMT 10 October 1983

.....................-.-.

.-.--.-. o.-.... o-..•.-.._.... .', ... ,'_

11

1.6. Comments "

A comment In Ada starts with a double hyphen and Is terminated by an end of
line.

Comments can appear either in a line following a statement or declaration, or
as stand-alone comments occupying a complete line.

E xample 9: Attached and Stand-Alone Comments

X ' X+ 1; -- increase value of X by 1

-- comments can appear on any line
I- following all lexical units of the line
-- or they can appear as stand-alone
-- comments taking up the whole line
-- like the present five-line comment

Comments do not affect the computation performed by a program but can
greatly increase the readability, modifiability, and understandability of programs.
They play no role in communicating with the computer but play a key role in
communicating the purpose and structure of the program to other humans. They
should not be viewed as a "cosmetic" add-on, but as an integral part of the overall
programming process that reduces the cost of debugging, maintenance and other
operations that require understanding of the program by humans.

Which of the following assertions are false?

a) Comments can appear on the same line as an executable statement provided they
appear after the executable statement.
b) Removing all comments from a program does not affect the computation per-
formed by the program.
c) Comments are useful for program development but should be removed when
testing has been completed so as to improve run-time efficiency.
d) Comments are a form of documentation that may greatly enhance the under-
standability of a program.
e) Good comments can greatly reduce the costs of developing and maintaining a
program.

P~ (DRAPTt 10 Octobe~r 1983

-.. ,.-.

-~ ---. - -.- -- *-*

* 1.7. Positional Number Representation

The decimal number "986" has a 6 in the units position, an 8 In the tens

position, and a 9 in the hundreds position. Its value is given by:

986: 9*100 , 8*10 + 6

This notation for decimal number representation is called a positional
representation because the value of each digit depends on its position in the digit
string. The two salient features of the positional notation for decimal numbers
are.

a) Decimal numbers consist of a sequence of decimal digits taken from the set
J0,1,2,3,4,5,6,7,8,9 j.

b) The rightmost position is the units position and each position to the left is
worth a factor of ten more than its right neighbor.

Decimal notation has become the standard representation in part because we
use our ten fingers for counting. Note that the term digit is the Latin word for
finger.

Binary numbers are an alternative form of number representation particu-
larly suited to computers. The two salient features of binary number notation are
the following:

a) Binary numbers consist of a sequence of binary digits taken from the set 0, 1 j.
b) The rightmost position is the units position and each digit position to the left is
worth a factor of two more than its right neighbor.

Thus the binary number 1101 has a 1 in the units position, a 0 in the twos

position, a 1 in the fours position, and a 1 in the eights position.

1101 : 1*8+ 1*4+0*2+ 1*1 = 8 4 1 = 13

Our definitions of salient features of decimal and binary numbers suggest the
following characterization of numbers of an arbitrary number base N.

a) Base N numbers consist of a sequence of digits from the set 0,1,...,N-1 J.
b) The rightmost position is the units position and each digit position to the left is
worth a factor of N more than its right neighbor.

Example: Base 3 numbers are sequences of digits taken from the set 0,1,2 . The

base 3 number 212 has the following value.

212:2*9,1*3 +2*1 = 18+3 +2: 23

Which of the following assertions are false?
a) The decimal number 756 has the value 7*100 + 5*10 + 6.
b) In positional number representations each digit position to the right is worth a
factor of two more than its left neighbor.
c) The binary number 1011 has the decimal value 11.
d) The base 3 number 1011 has the decimal value 31.
e) The base 4 number 1011 has the decimal value 69.

(DAFT: 10 OCO~br 1983S. .- * " .

13

* .8. Based Literals
Ada allows numbers to be represented as based literals in any number base -

between two and sixteen.
Based literals consist of a base specified in decimal, followed by a number in

the specified base enclosed by the symbol #.followed optionally be a decimal
exponent.

Example 10: Based Binary and Ternary Literals

2 #111# -base 2(binary) literal with value 4 +2 1 7
2 #11 1# E3 - base 2 literal with value 7*8 = 56
3 #21 2# -- base 3 (ternary) literal with value 18 + 8*+ 2 z 23
3 #212# El -- base 3 literal with value 23*3 z 69

Based literals with base 16 are called hexadecimal literals. The digits
10, 11, 12,13,14,15 of a hexadecimal literal are represented by the letters
A,B,C,0,E,F.

Example 11: Hexadecimal Literal s

16 #A1# = 10*16 + 1 = 161
16 #BF# = 11*16,+ 165 191
16 #FF#j = 15*16 + 15 =255

Based literals may be represented not only by integers but also by real
numbers. Based literals representing real numbers have a decimal point in their
number part.

Example 12: Based.Real Literals

2 #1.11 # -- one and three quarters
3 #1.11#one and four ninths

2 #1.11# El -Threecand ahalf
2 #111IJ 111.# E-4 -fifteen and fIf teen sixteenths
16 #yPF.0# E-1 f fifteen and fIf teen sixteenths

Which of the following assertions are false?

a) The based literal 3#222# and the decimal literal 26 represent the same value.
b) 4#333# and 63 are two alternative representations of the same value.
c) 15#EF# represents the value 225.
d) 8#70.0#E-1I represents the integer 7.
*) 5#~44.0#IE- 1 represents the number four and four fifths.

0 DRAM~ 10 October 1083

_ _ _ _ .- rn -

14

Concept Map for Unit 2: Syntactic Notation
The purpose of this unit is to introduce a notation for defining the syntax of

programming language constructs. The relation among concepts Introduced In
this unit is given by the following concept map.

productions
syntactic operators

alterna ien t conaiersio

(vertical bar) i (space smbo

Faritr3y occurence optiapfo occurreny Nt
__(curly brackets)) (square brackets)

illustrate by definingrintegers t""

nidentifiers
/

nmeric literals/

.Figure 3: Concept Map for Syntactic Notation _

Syntactic categories in programming languages correspond to parts of speech: " ' i ! -

in natural language. Identifiers and literals correspond to nouns, while operators
correspond to verbs.

Productions are a mechanism for naming new syntactic categories con- ..
structed from previously defined syntactic categories. There are four syntactic
operators for constructing new syntactic categories.

(1) The alternation operator X I Y, which constructs the union of the character
strings X and Y.

(2) The concatenation operator X Y, which determines the set of all character
strings consisting of an instance of X followed by an instance of Y.

(3) The curly bracket I X J, which specifies an arbitrary number of occurrences
of instances of the syntactic category X.

(4) The square bracket [X], which specifies the optional occurrence of an
instance of X. specifies optional occurrence of a construct.

The use of productions to define syntactic categories is illustrated by defin-
Ing the syntactic categories integer, Identifier and numeric literal.

The first frame Introduces productions and the alternation operator. The
second frame introduces the concatenation operator. The third frame introduces
arbitrary and optional occurrence and develops the syntactic definition of identif-
lots. The fourth frame develops the syntactic definition of numeric literals.

()DRAPTA, to October 1083

.-. : ... ,, ', *.' "..C .;, ,'.* * '.

2. 1. Productions and Syntactic Categories
The syntax of Ada is defined by productions that serve to name syntactic

categories.
Productions have a left-hand-side specifying the category being defined and

a right-hand-side which specifies the definition.

deflned-syntactIc-category ::u syntactIc-definItion

The syntactic category "digit" may be defined by the following production:

The symbol :umay be read as "is def ined as. The vertical bar may be read

as "or'. The production for digit may therefore be read as:

digit Is defined as 0 or 1 or 2 or S or 40!6 or 6 or 7 or S or S

The vertical bar is called the alternation operator. It Is used to define new syntac- -

tic categories In terms of a set of alternatives which constitute instances of that
category.

The syntactic categories "upper...caseJetter" and "lower...caseJetter" may
be defined in terms of characters of the Ada alphabet as follows:

upper-cjase-letter ::= AJBICIDIEIFIGIHIIJJIKILIMINIOIPIOI RISITIUIVIWJXIYIZ
Iower-o..aseJetter ::= alblcldlelf lglhllljlklijmlnlolplqlrlsltlulvlwxlyjz-

The syntactic categories "letter", and "letter-or-..lgit" may be defined in
terms of previously-defined syntactic categories as follows:

letter ::= upper...caseJetter I lowercaase-letter
Ietter...oridigit ::= letter I digit -

The alternatives of an alternation operator can be character strings (termi-

nals) or syntactic categories.

Which of the following assertions are false?

a) The syntactic category 'letter" determines a set with 62 members. 0
b) letter..or..digit Is the union of the set of letters and the set of digits.
c) The alternatives of an alternation operator may be syntactic categories.
d) The categories digit and ietter determine disjoint subsets of the Ada character
set.
e) The number of elements In the syntactic category "XIY' Is the sum of the
number of elements in the categories X and Y.

()DRAP?~ 10 Ocober 1 983

16

2.2. The Concatenation Operator

Definition: The concatenation "X Y" of two character strings "X" and "Y" is the
character string consisting of the string X followed by the string Y.

The concatenation operator is denoted by a space. It may be applied to two
characters, as in "a b" to yield the two-character sequence "ab". It may be applied
to two character strings, as in "abc xyz" to yield the character string "abcxyz".

The idea of concatenation may be extended so that we can concatenate not
only character strings but also syntactic categories.

Definition: The concatenation "X Y" of two syntactic categories "X" and "Y" is the
set of all character strings consisting of a string in the set X followed by a string
in the set Y.

,Example 13: Concatenation of Syntactic Categories

X ::u AIB -- X is a set with two letters JA, BI - -

Y.: 112 -- Y is a set with two digits J1, 2j
XY :: X Y -- XY is a set with four strings JA1, A2, i, 1B2

The set of 100 two-digit strings and the set of 1000 three-digit strings may
be defined as follows: -

two-digits nam digit digit -- set of 100 two-digit strings
three"digits ::= two-digits digit -- set of 1000 three-digit strings

The combined use of the alternation and concatenation operators provide a
powerful mechanism for defining sets of character strings containing large
numbers of elements.

In particular, if X is a syntactic category with M alternative forms and Y Is a
syntactic category with N alternative forms, then X Y is a syntactic category with
M*N alternative forms.

Which of the following assertions are false?

a) Syntactic categories determine sets of character strings.
b) The number of elements in the set "letter digit" is the product of the number of
elements in the sets "letter" and "digit".
c) The set of character strings determined by "X Y" is always bigger than the set of
character strings in X or V.
d) three.digits digit and two-digits two.digits denote Identical sets of character
strings.
e) Productions serve to associate a name with a set of character strings.

()D RAfl 10 Octor 1983

7e. . . . * . . .-

17

2.3. The Syntax of Integers and Identifiers
Arbitrary replication of syntactic constructs is indicated by curly brackets.

a s-- et containing zero or more instances of the letter "a"
digit -- set with an arbitrary number of (zero or more) digits

Curly brackets allow us to define sets with an Infinite number of characters.

The infinite set of unsigned integers may be defined as follows:

unsigned-Integer : digit I digit - includes 3, 35, 356

Square brackets denote an optional occurrence of the enclosed syntactic con-
struct. For example the optional occurrence of underscores in integer literals is
captured by the following syntactic definition:

integer ::: digit [4 digit -- includes 3, 3_000, 1-000.000

This definition reads: An integer is defined as a digit followed by an arbitrary
number of digits each of which may be optionally preceded by an underscore.

The syntactic definition of identifiers Is similar in structure to the above
definition of the class of integers. ,

Identifier ::= letter 1 [-3 letter-or-digiti -- Includes X, X56, X-56

"An identifier in Ada consists of a letter followed by an arbitrary number (zero or
more) of occurrences of a letter or digit each of which may be optionally preceded
by an underscore."

The syntactic definitions above use all four of our mechanisms for syntactic
definition.

alternation, denoted by the vertical bar
concatenation, denoted by the space symbol
arbitrary replication, denoted by curly brackets
optional occurrence, denoted by square brackets

Alternation is used in defining the categories letter and digit. Concatenation
Is used in specifying that an identifier is an element of the set letter concatenated
with an element of the set [.. letter.ordiglt 1. The curly and square brackets
are used in the construct j [X] Y I for specifying an arbitrary number of instances
of a category Y each of which may be optionally preceded by an instance of the
category X.

Which of the following assertions are false?
a) Curly brackets allow sets with an infinite number of elements to be defined.
b) The production "digit.string ::= digit Idigiti" asserts that every string of one or
more digits is an instance of the syntactic category "digit-string".
c) The production "integer ::a digit I [4j digiti" defines an "integer" to be a digit
string which may have embedded single underscores.
d) The production "abc-string ::z jalblcj" asserts that a three-character string
over the alphabet ab,c is an instance of "abc-string".
e) The set of strings which are legal identifiers is a subset of the set of all possible
strings over the alphabet of Ada.

0 DR.An: 10 October 1983

............. ..

-. .. -•-%.. -,-. ° % -. 4 - .

18 p

* 2.4. The Syntax of Numeric Literals
The basic mechanisms for syntactic definition have been illustrated in previ-

ous frames. These mechanisms are further illustrated below by developing a syn-
tactic definition for numeric literals.

Numeric literals may be decimal literals or based literals.

numericoiteral ::a decimaUlteral I basedJiteral

Decimal literals consist of a numerical part followed optionally by an
exponent. The numeric part may be a digit string (for integers) or two digit
strings separated by a decimal point (for reals). The exponent part consists of the
letter E followed by a digit string optionally preceded by a sign.

decimal.literal ::z number-part [exponent] p
number-part ::u digitatring [. digit-string]
digitstring ::u digit I(-] digit.
exponent -s E [sign] digitstring

sign:z3 *j- -+I "

Based literals consist of a base which is an integer in the range 2 through 16,
a number part in an extended alphabet that may include the characters A B C D E
F, and an optional decimal exponent.

based Jiteral :: base #based-number# [exponent]

base,:a 213141561S71g110111112113114115
based-number ::= extended.digltxtring [. extendeddigit..tring]

extended.digliLstring :.: extended-digit [extended.digit"
extendeddLgit ::z digitIAIBICIDIEIF

The above syntactic definitions express the relatively complex rules for
decimal and based literals In a concise, but understandable way.

It should, however, be noted that the set of based literals defined here con-
tains certain strings that we would prefer to exclude, such as "2#58#" and
"1O#FF#".

Refinement of our definition so that the digits of a based number are res-
tricted to be smaller than the base would make It much longer. We could define
separate syntactic categories for binary-digit, ternary-digit etc, and syntactic
categories for based-binary-number, based-ternary-number etc. This would
require 30 extra productions, but would result in a more precise characterization
of the set of based literals. t

Which of the following assertions are false? a) The number part of a decimal
literal need not contain a decimal point.
b) The decimal digits are a subset of the extended digits.
c) Exponents for decimal literals and based literals have the same syntactic form. ...

d) The value of the based literal "2#FF#" is less than that of the based literal
'3IFF#".
e) All values specifiable by based literals can also be specified by decimal literals.

()DRAPr, 10 Ocober 1983

.2,

19

Concept Nlsp for Unit 3: Expressions, Statements, and Declarations

The purpose of this unit Is to introduce the basic ideas of expressions, state-
ments, and declarations, and to show how declarations and statements may be
combined into simple program structures.

The relation among these concepts Is Illustrated by the following concept
map.

expressions with Utera.

Cxpressioswt variable-s- object declarations

blocks with local variables

parameterless procedures.

Figure 4: Concept Map for Fxpressions, Statements, and Declarations

Expressions are rules for computing a value. Frame 1 introduces expressions
with literals and the idea of operator precedence. Frame 2 introduces expressions
with variables.

Assignment statements allow results computed by expressions to be recorded
as values of variables. Frame 3 introduces assignment statements and shows how
the value recorded by one assignment statement can be used in subsequent state-
ments.

Object declarations serve to introduce programmer-defined identifiers and
describe their properties. Frame 4 shows that object declarations of INTEGER vari-
ables determine the value-set and applicable operations of declared variables, and
indicates that declarations result in storage allocation for variables at the time of
their elaboration.

Frames 5 and 6 introduce two program structures (blocks and procedures) for
declaring a set of variables and then using them for computation. Procedures
name groups of declarations and statements so that they can be subsequently
called by a procedure call. Blocks are anonymous and must be executed in-line at
the point of the program where they occur.

Frame 7 reviews the syntax of procedure declarations, and contrasts the
declarative nature of declarations with the imperative nature of assignment state-
ments.

ODPIRAM 1OO0oftr 1983

D7o

3.1. Integer-Valued Expressions
Expressions are rules for computing a value by the application of operators to

operands.
The rules for evaluating arithmetic expressions in Ada are similar to those of

most other programming languages. These rules are Illustrated below for
integer-valued expressions with literal operands.

Example 14: Express ions that Compute Integer Values

3 -. expression with value 3
3 4 "expression with value 7
(3 +4) 5 -valueIs 35
3 + 4 *5 -- value Is 23, 3+(4*5)

The value of the expression containing just the integer literal 3 is simply the
value of the literal.

The value of the expression 3+4" is computed by applying the addition
operator to the values of "3" and 'A", yielding a value which may be represented
by the literal "7".

The expres sion "(3+4)*5" contains parentheses which indicate the order in
which operators are to be applied to operands. (3+4) is evaluated first, and the
resulting value Is used as an operand of *, yielding the value 7*5 z 35

The expression 3+4*5 does not contain parentheses to Indicate the order of
evaluation. However, by convention, multiplication has precedence over addition,
so that there are Implicit parentheses 3*(4*5) which determine a value 3 + 20=
23.

Rules for operator precedence allow the parentheses in the expression 3 + (4
w5) to be removed, making It shorter and more readable, but require parentheses
In (3 +t4) * 5 since their removal would change the value of the expression.

The exponentiation operator, denoted by ct has precedence over both addi-
tion and multiplication, so that

5 + 4 *3 *2 2:. 5 + (4 *(3 **2)) z5 +4* 9 = 5 + 36 m 41

The operators +, are said to be binary operators because they take two
operands. The binary operators also include minus(-) with the same precedence as
+ and divide(/) with the same precedence as *. Thus "3 - 10 / 5 : 3 - 2 1"

Operators with Just a single operand are said to be unary operators. The
operators 4,- may be used as unary operators as in "2**(-3)".

Which of the following assertions are false?

a) The expression "3*4,5*8" has the value 42.
b) "8*4,5*6" has the same value as (3*4).(5*6).
c) Operator precedence rules allow the parentheses In "(4*3)**2" to be omitted
without changing the value of the expression.
d) * Is a binary operator which takes two integer operands and yields an Integer
result
a) The operator - may be used both as a binary and as a unary operator.

()DRAF, 10 October 1983
,',.

~. - . "* ' -," --

21

3.2. Expressions with Variables
laterals have fixed values which can be determined from their syntactic

form. Variables have values which may be updated by assignment during the
course of a computation. At any given point of a computation the current value of
a variable is that which has most recently been assigned to it. The value of an
expression depends on the current values of its variables.

Example 16: Integer Expressions with Variables

Lot I x 3, J z 4, K a 5, be the current values of the variables I,J,K

I-- expression with value 3
I + J -- expression with value 3 + 4 z 7
(I • J) * K -- expression with value 7 * 5 = 35
I * J * K -- expression with value 3 + 20 = 23
K + J 1 2 -- expression with value 5 + 4 3 2 41

The expression consisting of the single variable I returns the current value of
I as its value.

Evaluation of the expression lJ is similar to evaluation of 3+4. Both are
evaluated by first evaluating the operands and then applying + to the resulting
values. The principal difference Is that the values of the operands 1,J in the
expression I+J can vary during execution, while the values of the operands 3,4 in
the expression 3+4 are fixed, so that the expression could be evaluated prior to

execution.
The expression "(I + J) * K" is evaluated by first evaluating "(I + J)" and then

using this value as an argument of *, yielding the value 7 * 5 z 35.

In the case of "1 + J * K" the operator * operates on the values of J and K, and
the operator + operates on the values of I and J * K, yielding the value 3.20 a 23.

The expression K+J*I**2 is evaluated as though it were parenthesized
K+(J*(I**2)), yielding the value 41.

We assumed above that all variables had current values without indicating
how these values were assigned to them. The primary method of assigning values
to variables is considered in the next frame.

Which of the following assertions are false?

a) The value of a variable may be modified during program execution.
b) "#" can take literals, variables, and expressions as its operands.
c) The value of an expression depends on the current values of its variables.
d) When 1:3, J=4, K=5, then I + J * K ** 2 has the value 103.
e) l**J and J01 have the same value.

0 DRAPT, 1o Oofr f13

.. . . "

22

3.8. Assignment Statements and Memory Cells

Assignment statements provide a mechanism for assigning the computed
value of an expression to a variable. The left-hand-side of an assignment state-
ment contains the variable to which a value is assigned, while the right-hand-
side contains the expression whose value Is being computed.

Example 16: Assignmel Satements

I :a 8; -- assign 3 to I
J : 1 1; -- assign 4 to J, using previous value of I
K :z 1 2 J; -- assign 11 to K, using values of I and J

Values assigned to a variable in a given assignment statement may be used in
subsequently executed assignment statements. The assignment statement for J
uses the previously assigned value of I while the assignment statement for K uses
the previously assigned values of both I and J.

Assignment to a variable destroys the previous value of that variable so that
it is lost for ever. This property of assignment reflects the property of computer
memory cells that storage of a value in a memory cell destroys the previous value.

Variables in Ada, as in other higher-level languages, model the properties of
memory cells. Occurrence of a variable I on the right-hand-side of an assignment
statement is modelled by a LOAD I instruction which loads its value into a register
of the central processing unit. Occurrence of a variable J on the left-hand-side of
an assignment statement is modelled by a STORE J Instruction.

The assignment statement J := 1 1; can be implemented by the following
machine language style instructions:

LOAD from memory cell I
ADD value of literal I
STORE In memory cell J

Higher-level languages like Ada allow us to replace such machine language

Instructions by user-friendly abstractions like "J :z 1 1;

The relation between variables and memory cells is not accidental. It reflects
the structure of the underlying computers for which higher-level languages were
designed, which has not changed since the days of Fortran.

Which of the following assertions are false?

a) Assignment statements allow values of variables to be changed.

b) Assignment to a variable destroys its previous value.
c) The assignment operator models storage of a value in the computer memory.
d) Occurrence of a variable on the right hand-side of an assignment statement
models loading of a value from the memory into the central processing unit.
e) "I :a I + 1;" replaces the integer value of I by its successor.

()DRAMl: 10 Ocober 1983

•...-....

-7 *7.- .~. -. -. .f ..-

23

8.4. Object Declarations
Declarations provide a mechanism for the naming of program entities. Object

declarations are a particular class of declarations for naming variables. The object
declaration below specifies that I is a variable of the type INTEGER.

Example 17': Object Declaration for the Variable I

I : INTEGER; -- declare variable named I of the type INTEGER

Variables in Ada must be declared to have a type compatible with the opera-
tors that will subsequently be applied to them. The objbct declaration 1:
INTEGER;" associates with I an object that can have values of the type INTEGER and
can be operated on by operations that expect operands of the type INTEGER. The
object associated with I may be thought of as a memory cell specialized to hold
values of the type INTEGER.

The following object declaration declares three variables I, J, K of the type
INTEGER.

I, J, K: INTEGER; -- declare three Integer variables named I,J,K

Its execution creates three objects (memory cells) to which values of the type
INTEGER can be assigned.

Declarations are said to be elaborated when they are encountered during pro-
gram execution. Elaboration of the declaration 1: INTEGER;" causes the integer-
valued variable I to come into existence. If we think of the variable I as a memory
cell, then elaboration of the declaration corresponds to allocation of the memory
cell. Object declarations are normally implemented by allocation of a memory cell
for each declared variable.

Declarations of variables impose constraints on the way in which the vari-
ables may be used in subsequent computations. The declaration "It INTEGER;" res-
tricts the variable I so that it can take only integer values and can be operated on
only by operations that expect integer-valued operands.

The type of a variable describes the set of values it can assume and the kinds
of operators which can be applied to its values. Variables of the type INTEGER can
take integers as their values and can appear as operands of operators that expect
integer values as their arguments.

Which of the following assertions are false?

a) Declaration of the variables I,J,K must occur prior to their use.
b) The declaration of a variable always specifies its Initial value.
c) The value assigned to a variable must be compatible with the type specified in
its type declaration
d) Declaration of a variable corresponds to allocation of a memory cell in which
values of that variable may be stored.
a) The type of a variable determines its value set and set of applicable operations.

P ()DRAPT, 10 o9obr 1983

. .. -

• • . . -

24

3.5. Blocks with Local Variables
Program structures may contain both object declarations for variables and

statements which specify computations on declared variables. The simplest such
program structure is the block.

Blocks have a declarative part introduced by the reserved identifier declare
and a statement part introduced by the reserved identifier begin and terminated
by the reserved identifier end.

Example 18: Block with Three Assign~ment Statements

declare -- keyword introducing declarative part of block
I,J,K: INTEGER; -- declarations of local variables I, J, K

begin -- keyword Introducing statement part of block
It. 3; -- assign 3 to I
J:ul1+; -- assign 4 to J
K::I2*J; -- assign 11 toK

end; -- keyword terminating the block

Elaboration of the declaration "I,J,K: INTEGER;" causes the variables I,J,K to
come into existence so that they are available for use in executing the statements
of the block. When execution of the block is completed the variables declared on
entry become inaccessible. We may think of variables declared in a block as being
dynamically allocated on entry to the block and deallocated on exit from the
block.

Variables declared in the declarative part of a block are said to be local to the
block. They are known only in the statement part of the block and cannot be
used outside the textual boundaries of the block.

The textual range over which a declared variable Is known is called the
scope of the variable. The scope of variables I, J, K extends from their point of
declaration to the end of the block in which they are declared.

The block above is an anonymous program structure which must be embedded
in a textually enclosing program structure before it can be executed. In the next
frame we shall introduce named program structures (procedures) which can be
invoked by procedure calls.

Which of the following assertions are false?

a) A block consists of a declarative part containing declarations of local variables,
followed by a statement part containing statements that may perform computa-
tions on local variables.
b) The keyword declare introduces the declarative part of the block.
c) The local variables IJ,K are known only within the block and cannot be used in
statements outside the scope of the block.
d) Only variables declared in the declaration part of a block may be used in its
statement part.
e) The type of I,J,K specified in the declaration part is compatible with the values
assigned to I,J,K in the statement part.

()DRAPT, 1 October 1983

,.-, -. -.--.. :.-..-.-'.-..,.. .-. ,-...- .. :.--.'.,--,-..-- '.:--: -:. - --,.-;. :.-.::,:- :-.-- :-.--': .. ,.-..'-.-..--..."-............--.--..-..-.........-.-'.--..-......

I

25

8.6. Parameterless Procedures

Procedures have a declarative part in which local identifiers may be declared
and a statement part that may perform computations on locally declared identif-
lers. In this respect they have a structure similar to that of blocks.

Procedures differ from blocks in having a name that allows them to be expli-
citly called (invoked) when they are needed.

Example 19: Procedure declaration for ASSIGN

procedure ASSIGN is -- declare a procedure nam bi ASSIGN
I,J,K: INTEGER; -- declarations of local varlables I, J, K

begin -- keyword introducing statement part of procedure
I := 3; -- assign 3 to I
J=z I+1; -- assign 4 to J
K:z I+2* J; -- assign I1toK

end ASSIGN; -- keyword terminating the procedure

This example of a procedure declaration serves to associate the declarations
and statements of the procedure with the name ASSIGN in much the same way
that the declaration 1: INTEGER;" associates an object which can take integer
values with the name I. It may be invoked by the following procedure call.

ASSIGN; -- Invoke the previously declared procedure ASSIGNIi

This call causes the procedure to be executed, creating objects (memory cells)
for the three local variables I,J,K, performing computations on local variables, and
deleting the locally declared variables on exit from the procedure.

Procedure declarations serve to introduce identifiers that are names of pro-
cedures while object declarations serve to introduce identifiers that are names of
variables. Procedures are executable sequences of actions and play a very dif-
ferent role in computation from objects which are place holders for storing data
values. Ada's declarative mechanism for associating identifiers with programi
entities may be used both for entities that determine sequences of actions and for
entities that represent data objects. The difference between action and data enti-
ties Is reflected by restrictions in the way declared entities may be used. Thus
data objects may be accessed and updated by assignment statements while pro-
cedures may be called and executed by procedure call statements.

Which of the following assertions are false?

a) Both blocks and procedures may have locally declared variables.
b) Procedures have a name that allows them to be called when they are needed,
while blocks are anonymous and are executed in-line as embedded components of
a larger computation.
c) The procedure ASSIGN has three parameters I,J,K.
d) The local variables I,J,K are created on entry to the procedure when it is called
and become inaccessible when execution of the procedure is completed.
e) Since all assignments are to local variables, execution of this procedure cannot
have any effect on any larger computation.

0 DRPAT: 10 October 1983

i-i,... -:. ---.i . "" i'..i ..- i- i..............-.......-...............,.......................:....,.,.......... -.... ;.....,............_.,.................-,..

26

8.7. Review of Declarations and Statements
We have introduced expressions, which perform computations by applying

operators to operands, assignment statements, whAch record the value of computed
expressions, and object declarations, which serve to name and describe the proper-
ties of variables. Blocks and procedures are composite program structures that
allow us to specify computations in terms of object declarations and statements
that make use of declared variables.

Procedures and blocks have a declaration part that describes local entities that
come into existence when the procedure is called and a statement part that speci-
fies a sequence of actions on locally declared entities.

Example 20: Syntactic Structure of Simple Procedures

simple-procedure-declaration ::= procedure NAME is
declaration-part

begin
statement-part

end p

The previously-discussed ASSIGN procedure has a declaration part that
declares three variables of the type INTEGER and a statement part that assigns
values to these variables. It is simple in its structure and does not do anything
that is particularly useful. But it illustrates in embryo form the underlying
structure of more complex Ada programs.

Both the declarative mechanisms in Ada for describing computational entities
and the imperative mechanisms for specifying sequences of actions are very rich.
In the next few frames, additional declarative and imperative mechanisms of Ada
are introduced to allow richer classes of computations to be specified.

First we shall increase our declarative repertoire, introducing the predefined
types FLOAT and BOOLEAN, the idea of programmer-defined types, and a particular
class of programmer-defined types called enumeration types. Then we shall
expand our imperative repertoire by introducing the if statement for selection
among alternative sequences of actions, the loop statement for the repetitive exe-
cution of statements. Functions which have input parameters whose value is
supplied by the caller and return a value as output to the caller are introduced.

Which of the following assertions are false?

a) Declarations describe computational entities while statements perform actions
on on computational entities.
b) Computational entities declared local to a procedure come into existence at com-
pile time.
c) Declarations in the declaration part of a procedure are local to that procedure.
d) The procedure ASSIGN declares three integer objects in its declaration part and
performs actions on them in its statement part.
e) The actions that may be performed in the statement part include the assignment
of values to variables.

) DPUAT, 10 October 1983

27

Concept Map for Unit 4: Scalar Data Types

The purpose of this unit is to introduce basic ideas relating to types. We res-
trict ourselves to scalar types (which have no components) and introduce struc-
tured types such as arrays in later instruction units.

The relation among concepts introduced in this section is as follows: -.

Figure6. Coc ap ar yp /a I ye s.

har types uetdiscrete tys

tgr types)

tyesintun n4ue thas egrtpe n enumeration types,'h reeie

FLOAT INTEGER BOO r

I- /
overlading (relational expression) type attributes

Figure 5: Concept Map for Scalar Types

The scalar types include the real types and the discrete types. The discrete
types in turn include the integer types and enumeration types. The predefined
types FLOAT, INTEGER, and BOOLEAN are respectively instances of real, integer,
and enumeration types.

In introducing the subject of types we start with the familiar types INTEGER,
FLOAT and BOOLEAN, and consider type classes such as the discrete types only
after experience in using familiar types has been gained.

Since the type INTEGER has already been extensively used in previous exam-
pies we start with the type FLOAT. Frame I introduces floating point literals and
variables, and discusses overloading of arithmetic operators for integer and
floating-point types. Frame 2 introduces the type BOOLEAN and the use of
BOOLEAN expressions to select alternatives in if-then-else statements. Frame 3
examines relational expressions. Frame 4 introduces type declarations for
programmer-defined types. Frame 5 introduces enumeration types that enumerate
their value set explicitly in the type definition. Frame 6 examines scalar types
and introduces the notion of type attributes denoted by special composite identif-
iers of the form TYPE'ATTRIBUTE. Frame 7 introduces discrete types and examines
type attributes of discrete types.

()DRApT, 100coober 1983

I- ,

28

4.1. Floating Point Types
Floating point numbers are representable by floating point literals (contain-

ing a decimal point). The procedure FLOATING-POINT declares three variables of
the predefined type FLOAT and assigns floating-point values to them.

Example 21: FLOATINGPOINT Procedure

procedure FLOATING_.POINT Is -- a procedure declaration
X,Y,Z: FLOAT; -- which declares three floating-point variables

begin -- and has a statement sequence
X :: 3.5; -- which evaluates floating-point expressions
Y : X + 1.0; -- and assigns their vales
Z : X + 2.5 * Y; -- to floating-point variables

and

Floating-point literals can be distinguished from integer literals because they
contain a decimal point. Floating-point variables can be distinguished from
integer variables by checking the type specified in their declaration.

The programmer Is responsible for ensuring type compatibility of operators
and operands in expressions and assignment statements. The compiler can check
that programs are type-compatible, and indicate compile time errors when types
are not compatible.

The operator + in the expression "X + 1.0" takes floating-point arguments and
produces a floating-point value. It has a different meaning from the operator + in
the expression "I + 1" which takes integer arguments and produces an integer
result. Floating-point addition is in fact implemented by a different machine
language operation from integer addition in the machine language of many com-
puters.

Symbols such as + which have different meanings in different contexts are
said to be overloaded.

The Ada compiler can always determine which meaning of . is intended in
any given context by examining the types of its operands.

Note: The ability to determine the types of all operands and to check for type
compatibility at compile time is referred to as strong typing. Ada is said to be a
strongly-typed language. Ada allows more rigorous checking of type consistency
than In some earlier languages such as Pascal or PL/I.

Which of the following assertions are false?
a) Floating-point literals can be syntactically distinguished from integer literals.
b) Floating-point variables can be syntactically distinguished from integer vari-
ables.
c) The operator + in the expression X 2.5*Y has operands of the type FLOAT.
d) A programmer can determine by reading an Ada program whether a given
Instance of the symbol + represents integer addition or floating-point addition.
e) Type compatibility between the right hand-side of an assignment statement and
Its left-hand-side can be syntactically determined.

-. 10 O 1983

.

. - - - - -~

29

4.2. BOOLEAN Types
The procedure BOOLEANS declares five BOOLEAN variables and assigns values

to them.

Example 22: BOOLEAN Variables, Expressions, and Assignment Statements

procedure BOOLEANS Is
HUNGRY, SLEEPY, A, B, C: BOOLEAN; -- declare five BOOLEAN variables

begin
HUNGRY := TRUE; -- HUNGRY becomes TRUE
SLEEPY :a not HUNGRY; -- SLEEPY becomes FALSE
A:= HUNGRY and SLEEPY; -- perform logical operations
B :-- HUNGRY or SLEEPY; -- on BOOLEAN variables
C := HUNGRY xor SLEEPY; -- and assign values to A, B, C

end;

The predefined type BOOLEAN has a two-element value set represented by the
literals TRUE, FALSE. Boolean variables may be operated on by the binary logical,
operators and, or, xor (exclusive or) and the unary operator not. These operators
have the standard logical meanings.

A and B is TRUE if both A and B are TRUE and FALSE otherwise.
A or B is FALSE if both A and B are FALSE and TRUE otherwise.

A xor B is TRUE if exactly one of A or B are TRUE and FALSE if both are TRUE
or both are FALSE.

not A is FALSE if A s TRUE and TRUE if A is FALSE.

One of the most important uses of BOOLEAN types Is In conditional branching -

statements to decide between alternative courses of action.

Example 23: Use of BOOLEAN Values for Conditional Branching

If HUNGRY then -- If HUNGRY has the value TRUE
EAT; -- then perform the action EAT

else
SLEEP; -- otherwise perform the action SLEEP

end If;

Which of the foUowing assertions are false?

a) The predefined type BOOLEAN has a two-element value set
b) Assignment statements may assign BOOLEAN values to BOOLEAN variables.
c) In the first example the variable A is assigned the value FALSE
d) The variable C s also assigned the value FALSE.
e) Boolean variables may occur In 1f statements to decide between alternative
actions.

S()DPAu, I0October 1983

.: '.."': .'.: .'.' . .:;,..'"-'.." . ..: -... . , .-.

30

4.3. Relational Operators and Relational Expressions

Relational operators such as "<" (less than) take numerical arguments and p
yield BOOLEAN results. The relational expression "3 < 4" compares its numerical
arguments 3 and 4 and yields the BOOLEAN value TRUE because 3 is in fact less
than 4.

Ada has six relational operators, each of which takes numerical arguments
and yields BOOLEAN values.

p
= /,, < < > >Z

Relational operators may be used to compare the values of two expressions
provided the expressions being compared are of the same type.

Example 24: Relational Operators

3 < 4 -- arguments are Integer literals, value Is TRUE
3.6 > 4.5 -- arguments are real literals, value is FALSE
I/: 0 -- TRUE If value of I Is not equal to zero
(I < 0) or (> 9) -- TRUE except for I In range 0.9
X < Y * 1.0 -- TRUE If value of X Is less than value of Y 1.0

Since relational expressions have BOOLEAN values they may be arguments of
BOOLEAN operators as in (I < 0) or (I > 9). Relational expressions may also be
assigned as values of BOOLEAN variables.

NEGATIVE :z I < 0; -- NEGATIVE becomes TRUE If and only If I i less than zero

Relational expressions, just as other BOOLEAN-valued expressions, can be
used to trigger a choice between alternative courses of action.

L
If I < 0 then

DO-SOMETHING;
else

DO-SOMETHING-ELSE;
end If;

This If statement demonstrates clearly the use of computed numerical results
as a basis for execution-time choice among alternative sequences of actions. The
ability to make such execution time choices is the basis for "intelligent behavior"
by computers.

Which of the following assertions is true?

a) The relational expression 3<4 has numerical arguments and produces a
BOOLEAN values.
b) Relational expressions can appear as operands of BOOLEAN operators.
c) Relational expressions can be assigned as values of INTEGER variables.
d) The ability to make execution-time choices based on computed results Is a basis
for "intelligent behavior" by computers.
e) The relational expressions on the right and left hand side of a relational opera-
tar must have the same type.

()DRAMlZ 10 Ociaer 2983

..-..... ...

31

4.4. Programmer-Defined Types
Programmer-defined types are introduced by type declarations.

type SHORTJNTEGER Is range -100..100;

This type declaration associates the typename SHORTJNTEGER with the type
definition "range -100..100" denoting a subrange of the integers. The procedure
below illustrates how this type may be used in subsequent object declarations and
how objects of the type may in turn be used for computation.

Example 25: Declaration and Use of Programmer-Defined Types

procedure TYPESAND-OBJECTS Is -- a procedure
type SHORTJNTEGER is range -100..100; -- with programmer-defined type,
L,M,N: SHORTJNTEGER; -- object declaration for the type,

begin -- and assignment statements
L:. 3; -- that may use Integer literals
M :z L + 1; -- and integer operations
N : L + 2 * M; -- but restrict the value set

end ASSIGN; -- to the range -100..100

The type declaration for SHORTJNTEGER Introduces a new (overloaded)
meaning for + that allows it to be used in expressions such as "L * M" for adding -

two short integers. But "mixed expressions" such as "I * M" with operands of dif-
ferent types are illegal.

The literal I in the expression "L+ 1" is Interpreted as a short integer while
the literal 1 in the expression "I + 1" is interpreted as a full integer. Thus literals,
just as the operator +, are automatically overloaded when a new type over a
subrange of the integers is introduced.

Type declarations in general have the following syntax:

type-declaration ::a type TYPE-NAME Is type-definition

The type definition for SHORTJNTEGER has the form "range -100..100". It
specifies that the operations of the defined type are inherited from the integers
and that values of variables are restricted to the range -100..100.

Which of the following assertions are false?
a) The literal 53 may be interpreted as a literal of the type INTF;GER or as a literal
of the type SHORTJNTEGER, depending on context.
b) The operator + may be used to add two integers or two short integers but not an
Integer and a short integer.
) The statement N :a N . 100; is illegal because it may result In the assignment of

an illegal value to N.
d) Both type and object declarations serve to introduce a new identifier and to
associate a denotation with the identifier.
e) The type definition range -100..100 defines a type whose values are a
subrange of the integers.

()DRAFT, 10 00er 19,83

-. " .

32 ..

4.5. Enumeration Types
Enumeration types have value sets which are defined by explicit enumera-

tion of their elements. The enumeration type DAY has a value set consisting of

the seven values MON, TUE, WED, THU, FRI, SAT, SUN.

type DAY Is (MON, TUE, WED, THU, FRI, SAT, SUN); -- type declaration

The procedure WEEKDAYS illustrates the declaration of variables of the type
DAY and the assignment of values to these variables.

Example 26: Enumeration Types

procedure WEEKDAYS Is
type DAY Is (MON, TUE, WED, THU, FRI, SAT, SUN); -- type declaration
FIRST-DAY, SOME-DAY: DAY; -- two objects of the type DAY

begin -- and a statement sequence
FIRST-DAY := MON; -- that assigns values of the type DAY
SOMEDAY :a THU; -- to variables of the type DAY
SOME-DAY :: FIRST-DAY;

end; .

The values of an enumeration type are called enumeration literals. Enumera-
tion literals may in general be identifiers or character literals. The valdtes of the
type DAY are identifiers. The type VOWEL has character literals as its values.

type VOWEL Is ('A', 'E', '', '0, 'U');

Enumeration types allow variables to have values which are non-numeric.
The operations applicable to values of an enumeration type differ from those
applicable to numeric variables. For example values of an enumeration type can-
not be added or multiplied. But they are more natural than numeric variables in
many practical applications. For example variables of the type DAY are useful In
computing the work schedules or payroll of an industrial organization.

The value set of an enumeration type is ordered by the order of occurrence of
the enumeration values in the type definition. Thus the value set of DAY has the

property that MON < TUE and TUE < FRI.

Declaration of an enumeration type introduces not only a new type name but
also a set of names of enumeration literals. The literals may be thought of as
Implicitly declared by their occurrence in the type declaration and have a scope
which extends from their point of declaration to the end of the unit in which
they are declared. Although they are syntactically indistinguishable from identif-
lers the compiler can determine from context whether a given identifier is being
used as an enumeration literal or as an explicitly declared identifier.

Which of the following assertions are false:
a) Enumeration types are a class of programmer-defined types.
b) Enumeration literals and identifiers have the same syntax.
c) Variables of an enumeration type must take non-numeric values.
d) The value et of the type DAY is ordered with MON < FRI.
e) The enumeration type DAY has seven values in its value set.

(DRAMfl0 W~br 1983

33

4.6. Scalar Types and their Attributes

The class of scalar types comprises the Integer types, real types, and
enumeration types.

The Integer types are the class of all types that have Integer values and
integer operations, and include the predefined type INTEGER. The real types are
the class of all types with real values and associated operations and include the
predefined type FLOAT. The enumeration types are the class of all types whose
value set is introduced by explicit listing of alternatives, and includes the prede-
fined type BOOLEAN.

All scalar types have the following properties:

1. Scalar types have ordered value sets whose elements may be compared by rela-
tional operators.

2. The value set of any scalar type T has a least element denoted by the type attri-
bute TIFIRST and a greatest element denoted by the attribute T'LAST.

The first and last elements of the enumeration type DAY can be denoted by
the following type attributes.

Example 27: The Type Attributes First and Last

DAY'FIRST -- first element of the type DAY (MON)
DAY'LAST -- last element of the type DAY (SUN)

INTEGER'FIRST -- first (smallest) integer value, implementation defined
FLOAT'LAST -- last (largest) floating point value, implementation defined
BOOLEAN'FIRST -- first Boolean value (FALSE)

Type attributes are properties of the type rather than of particular values of
the type. They have the form "T'A", where T is the type name, and A is the attri-
bute name. They generally cannot be modified, being accessible in a read-only
mode. They allow the programmer to determine properties of the type indepen-
dently of computations on values of the type.

The class of scalar types Is so large that it has only a few type attributes com-
mon to all types in the class. We shall see below that the class of discrete types,
vhich is a subclass of the scalar types containing the integer and enumeration
types, has a richer set of type attributes.

Which of the following assertions are false?

a) The class of integer types includes the predefined type INTEGER.
b) The class of scalar types includes the predefined type FLOAT.
c) The compiler can always determine whether a given identifier is a type attri-
bute by examining its syntactic form.
d) The relational expression "S < T" has the value TRUE if S and T are of the same
awalar type and the value FALSE if S and T are of different scalar types.
e) The value of the attribute INTEGER'FIRST is implementation-defined.

,DAta 10 i:::r 1983

34

4.7. Discrete Types and their Attributes
The class of discrete types is a subclass of the scalar types that Includes

integer and enumeration types but excludes real types. Discrete types have
ordered value sets with the additional property that every element other than the
last has a unique successor. ' -.

Every discrete type T has the type attributes T'SUCC and T'PRED which can
be applied to values of the type to yield successor and predecessor values.

Example 28: Successor and Predecessor Attributes

DAYISUCC(MON) -- yields the successor of MON (TUE)
DAY'PRED(TUE) -- yields the predecessor of TUE (MON) S
DAYISUCC(D) -- yields the successor of the value of D
DAY'SUCC(DAY'LAST) -- undefined, last element has no successor
DAY'PRED(DAY'FIRST) -- undefined, first element has no predecessor
INTEGER'SUCC(I) -- yields the successor of the integer I

S

The attributes SUCC and PRED are functions which are defined for all
discrete types automatically as part of the process of defining the type itself. In
this respect they are like the arithmetic operator + which is automatically defined
for all numeric types, and the relational operator < which is automatically defined
for all scalar types. However, type attributes must be explicitly qualified by a
type name while arithmetic and relational operators may be syntactically over- P
loaded so that the type of a particular instance of the operator is implicit in the
types of the operands.

Discrete types have other attributes such as POS which determines the ordi-
nal position of a value In the ordered value set, and VAL which determines the
value associated with a given ordinal position.

DAY'POS(WED) -- value is 3, WED Is third value of type DAY
DAY'VAL(4) -- value Is THU, the fourth value of the type DAY is THU

Our purpose is not to give a complete description of attributes of scalar or
discrete types but simply to introduce the concept of type classes and type attri-
butes.

Type attributes are useful in programming when it is necessary to determine
properties of types independently of computations with objects or values of the
type. In addition, a proper understanding of the status of type attributes provides
Insights into the nature of the notion of type.

Which of the following assertions are false?

a) All discrete types are scalar types.
b) DAY'PRED(MON) is undefined.
c) INTEGERIPRED(INTEGER LAST) is undefined
d) The type 8HORT.JNTEGER is an integer type, predefined type, and scalar type.
e) DAY'POS(DAY'VAL(D)) z D for all values D of the type DAY.

(DRAFFs 10Otober IM8

. ° .

.•

- --- -

I!

36

Concept Ilp for Unit 5: Control Structures

The purpose of this section is to introduce control structures that control the
order of statement execution. The idea of function declarations with formal
parameters and function calls with actual parameters is introduced.

The relation among concepts in this section is as follows:

C!=e-uences of actions

(if-then statements l stements,

_ s atements for statements, iteration

.... statements /oop parameter, discrete ranges)

J - -, ;
reneralaif statment. CfuCtion w ith parameter)

Figure 6: Concept Map for Scalar Types

If statements specify a choice between different courses of action while loop
statements specify repetitive execution of a sequence of actions.

Several varieties of If statements are discussed, including if-then statements
used to specify optional execution of a component statement, If-then-else state-
ments used to specify a choice between two component statements, and If-then-
elsif statements used to specify a choice among several component statements.

loop statements specify repetitive execution of a sequence of actions. for
statements are a special kind of loop statement which specify repetitive execution
of a loop for a sequence of values of a loop parameter. The set of values over
which a loop parameter may vary must be a discrete range.

Functions return a value of a specified type and may occur In an expression
wherever a value of that type may occur. Functions with formal parameters may
be called with different actual parameters on different function calls.

A summation function Is defined whose parameter specifies the number of
elements to be summed and causes the loop to be executed a different number of
times for different actual parameter values.

. .1 . o .

36

6.1. Sequences of Actions
Our discussion of types has expanded the class of objects we can describe in I

the declarative part of a procedure. We shall now turn our attention to the
specification of sequences of actions n the statement part.

The assignment statement is the primary mechanism for recording substan-
tive progress in a computation. Long computations generally require the execu-
tion of a long sequence of assignment statements each of which records an inter-
mediate result that may be subsequently used.

However the order in which assignment statements are to be executed
requires careful specification and generally depends dynamically on initial data
values.

The programming language structures concerned with controlling the order
of statement execution are called control structures. Control structures may be
classified into two categories:

conditional branching statements which specify a choice among alternative
sequences of action.

loop statements which specify the repetitive execution of sequences of actions

The primary conditional branching statement is the If statement. The fol-
lowing If statement computes the absolute value of X.

Example 29: One-Branch If Statement (if-then statement) .

If X <0.0 then -- If X Is less than zero
X - X; -- replace X by minus X

end if; -- otherwise do nothing

This If statement is an example of an If-then statement and has the form:

If condition then
perform action

end If;

It allows an execution-time choice to be made between performing an action
and omitting it, depending on a computed condition.

Which of the following conditions are false?

a) Assignment statements are the primary mechanism for recording substantive
progress in a computation.
b) If statements are the primary mechanism for repetitive statement execution.
c) If statements and loop statements represent two alternative mechanisms for
controlling the order of statement execution.
d) Relational expressions may be used to choose among alternative actions of an if
statement.
e) The variable X in our example is used for both computation and control.

0DRAFT, 10 October 1983

[".'I".."

................................... ,...- "J:-""

37

8.2. If Statements

The following two-branch If statement, called an If-then-else statement,
determines a choice between two alternative actions. It assigns to Z the maximum
of the values of X and Y.

Example 30: Two-Branch If Statement (If-then-else Statement)

If X > Y then -- If X > Y has the value TRUE
Z:u X; -- assigns X to Z

else -- If X > Y has the value FALSE
Z :z Y; -- assign Y to Z

end If; -- so that Z Is maximum of X and Y

Computing the maximum of the three variables A, B,C can be accomplished
by the following three-branch If statement.

Example 31: If Statement with Three Branches

IfA>BandA>Cthen -- IfbothA>BandA>CareTRUE
Z:-- A; -- assign A to Z

elslf B > C then -- otherwise If B > C
Z := B; -- assign B to Z

else -- If none of the above
Z := C; -- assign C to Z

end If; -- so that Z is max of A,B,C

This If statement illustrates the use of composite conditions such as "A > B" -

and "A > C" constructed from constituent conditions such as "A > B" by Boolean
operators such as and. It illustrates also the keyword elsif which allows multiple
branches to be defined, each with a condition which determines whether the
statement or sequence of statements associated with that branch is to be executed.

Which of the following assertions are false?

a) An If-then-else statement determines a choice between two alternative
sequences of actions.
b) A > B and A > C is true if A is the maximum element of A, B, C.
c) The test B > C is performed only if A is not the maximum element.
d) If A is not the maximum element and B > C then C is the maximum element.
e) Z z- C; is executed only if C is the maximum element.

()DRAFTi 10 Oobr1983

...... . ..

38

5.3. General Form of the If Statement
The general form of the If statement is given by the following syntactic

definition.

Example 32. Syntax of the If Statement

If-statement::: If condition then
sequence-of -statements

jelsif condition then
sequence-of-statements

[else
sequence-of-statements]

end If;

An if statement always contains a then branch. It may have no elsif or else
branches, in which case the choice is between executing and omitting the action
n the then branch. Each elsif branch determines a potential alternative and is

executed If the condition in the branch is TRUE and all preceding conditions are
FALSE. If an else branch is present it occurs last and is executed when all condi-
tions are false. An else branch guarantees execution of precisely one branch of
the If statement, while absence of an else branch results in no branch being exe-
cuted when all conditions are false.

Example 33: if-then-elsif Statement

If HUNGRY then
EAT; ' " "

elsif SLEEPY then
SLEEP;

end If;

This results in eating when hungry, sleeping when sleepy but not hungry,

and no action (indolence) when neither hungry nor sleepy.

Which of the following assertions are false?

a) The number of cond-tions in an If statement is one greater than the number of
elef statements.
b) Conditions may in general have Boolean or numerical values.
c) HUNGRY is a BOOLEAN variable while EAT s a procedure call.
d) The statement "if TRUE then action end If;" has the same effect as unconditional
execution of the action.

) if statements without ebe clauses may result in no action being executed.

()DRAFF: 10 Otober 1983
.

*. ..-. .--.'' .." .. .' -. :. " . i- " ' . ' .S ".: '.'' ", ':'',

39

8.4. The Loop Statement

An If statement causes at most one of its branches to be executed when it is
encountered during execution. In contrast, a loop statement specifies multiple
executions of a sequence of statements. Loop statements in their simplest form
specify unconditional repetitive execution of a sequence of statements.

Example 34: Repetitive Execution with Exit Statement

I :: 0; -- Initialize I to zero
loop -- and enter a loop

I := I + 1; -- which repeatedly increments I by 1
exit when I : 1000; -- and exits when I : 1000

end loop -- continuing with the next statement
next-statement -- that textually follows the loop

Exit from this loop Is determined by an internal condition within the loop
(the condition X = 1000).

The for statement is a specialized kind of loop statement which specifies
repetitive execution for a sequence of values of a loop parameter as a prefix to the
loop.

Example 35: A Simple For Loop

SUM := 0; -- Initialize SUM to zero
for I in 1..5 loop repeat five times with I 1,2,3,4,5

SUM :- SUM + I; -- add value of I to sum
end loop;

This program first initializes the variable SUM to zero and then executes the
statement "SUM := SUM + I;" five times with I taking the values 1,2,3,4,5. On
completion, the variable SUM will have the value 1+2+3+4+5 = 15.

I is called the loop parameter and "I In 1 .. " is called the loop parameter
specification. "1.." is called a range specification and specifies the range
(sequence of values) of the loop parameter.

In the next frame loop parameter specifications whose number of repetitions
may depend on the computed value at execution time will be considered.

Which of the following assertions are false?

a) Loops may specify their termination Internally by an exit statement or exter-
nally as part of the loop parameter specification.
b) A for statement is a special kind of loop statement.
c) Variables that are updated in a loop should be initialized prior to the loop.
d) The variable SUM takes on the five successive values 1,3,6,10,15 during the
course of execution of the for loop.
e) The loop parameter specification 1 .. 5 specifies a subrange of the Integers.

DA 1 .18-

0/.). T, .0=oe . . .

40

5.5. The For Statement

The procedure FOR_-LOOP sums the first N integers. The summation loop is
executed a variable number of times depending on the current value of N.

Example 36: Sum of N Integers

procedure FOR-LOOP is -- procedure containing for loop
SUM: INTEGER:= 0; -- with Initialized declaration of SUM

begin -- and a statement part
for I in 1..N loop -- with a for statement

SUM:= SUM + I; -- that Is executed N times
end loop; -- to sum the integers 1,2,..,N

ant FOR-LOOP;

The three variables N, SUM, and I play different roles in this procedure
declaration. N is a non-local variable which must be declared outside the pro-
cedure and have a value assigned to it prior to calling the procedure. SUM is a
local variable that is declared and initialized in the declarative part of the pro-
cedure and repeatedly updated in the statement part of the procedure. I is an
mplicitly-declared loop parameter that has no explicit declaration.

Non-local, local, and implicitly-declared identifiers represent three alterna-
tive mechanisms for introducing identifiers that may be used in a program.

The loop parameter I is considered to be implicitly declared as a local variable
of the for statement with a type determined by the element type of the range
specification. It takes on the sequence of values of the range specification
(1,2,..,N) during the execution of the loop and becomes inaccessible on exit from
the loop since its scope is restricted to the for statement. It is a bound variable of
the for statement which could be replaced (in its two occurrences) by another
variable such as J without changing the effect of the computation.

A loop parameter specification of the form "I in M..N" will cause the sequence
of statements in the for loop to be executed N-M+1 times if M <= N. If M > N the
loop will be executed zero times.

In the next frame we consider a summation function which inputs the
number of items to be summed as a parameter and returns the computed sum as a
result to the caller.

Which of the following assertions are false?
a) The non-local variable N must have a value assigned to It prior to calling the
procedure.
b) If N has the value 1, then the loop will be executed zero times and the value of
SUM will remain zero.
c) Non-local variables are declared externally to a procedure, while local variables
are declared internally to a procedure.
d) The loop parameter specification "I In 3..5" would result in three executions of
the statement "SUM :: SUM + I;", and cause SUM to have the value 12.
a) Replacing the two occurrences of I in the program by J would not change its %
computational effect.

(DRAFT: 10 October 1983..............................

.o.. .,

41

6.6. Functions with Parameters
Functions are defined by function declarations and called by function calls.

They return a value to the caller when their execution terminates.

The function INTSUM has a parameter N of the type INTEGER which specifies
the number of elements to be summed. It returns the computed sum as a result to
the caller.

Example 3-7: Sum of First N Integers 0

function INTSUM (N:INTEGER) return INTEGER is
SUM: INTEGER := 0; -- local variable Initialized to zero

begin
for I in 1..N loop -- loop N times

SUM := SUM 4 1; -- accumulate sum
end loop;
return SUM; -- return value of SUM and exit

end INTSUM;

The following assignment statement calls INTSUM to sum the first five

integers and assigns the result to the variable SUM1.

SUMI := INTSUM(5); -- call with literal parameter

Function calls of INTSUM can appear in an expression anywhere that an
integer variable or integer literal can appear. The following statement computes
the sum of the first K integers plus twice the sum of the first K + 3 integers.

SUM2 : INTSUM(K) + 2 * INTSUM(K + 3); -- two calls In one statement

The parameter N in the function declaration is said to be a formal parameter p
since its only role is to serve as a placeholder for an actual parameters transmitted
to the function at the time of call. The actual parameters for INTSUM can be
literals such as 6, identifiers such as K or expressions such as K + 3.

A function call with a given actual parameter causes the parameter value to
be assigned to the formal parameter N at the time of function call and used in
computing the function value. Execution is terminated by a return statement 0
which makes the result available as an operand in an expression.

Which of the following assertions are false?

a) The call INTSUM(4) yields the value 10.
b) Formal parameters are place holders for actual parameter values.
c) Actual parameters of functions must be constants.
d) If the statement SUM .m SUM + I; were replaced by SUM := SUM + I I; the
resulting function would compute the sum of the first N squares.
e) Exit from a function occurs by executing a return statement.

() DRAFT: 10 October 1983

. . .

42

6.7. Discrete Ranges
The sequence of values which a loop parameter may assume during execution

of a for statement must be a discrete range with the following property.

Definition: A discrete range is an ordered sequence of values with a first element,
a last element, and the property that all elements other than the last has a unique
successor.

Range specifications such as 1..5 and 1..N determine discrete ranges of
integers. However discrete ranges need not be ranges of integers. The ordered
sequence of values of an enumeration type determines a discrete range and can be
used as a loop parameter specification.

Example 38: Iteration over an Enumeration Type

for I in DAY loop
-- execute statements In loop for each weekday

end loop;

This example illustrates that iteration over a discrete range of weekdays is
Just as meaningful as iteration over a discrete range of integers.

The discrete range associated with the discrete type DAY is given by
MON..SUN. We could have used the discrete range MON..SUN in place of the
discrete type DAY in the above for statement. The range of a loop parameter can be
specified either by a discrete range or a discrete type.

Every discrete type has a value set T'FIRST..T'LAST that is a discrete range,
and every discrete range could in principle be named by a discrete type. The
discrete range 1.5 could be specified as the following discrete type.

type ONE__TOFIVE is range 1..6;

for I In ONETOJFIVE loop ...

Discrete types and discrete ranges are important in Ada because they capture
the intuitive notion of a sequence of values. The notion of a discrete range arises
not only in defining the sequence of values of a loop parameter but also in defin-
tng the range of index values of an array.

Which of the following assertions are false?

a) Loop parameter specifications must specify a discrete range over which the loop
parameter takes its values.
b) Iteration over discrete ranges of weekdays is just as meaningful as iteration
over discrete ranges of integers.
c) MON..SUN and 1 ..6 denote discrete ranges.
d) type ONF,_TO._FIVE Is range 1 ..5; associates a discrete type with the discrete
range 1...
e) A discrete type T has a discrete range T'FIRST..TLAST.

ODRAFT, 10 OCCober 1983

43

6.8. Syntax of For Statements

A for statement consists of the keyword "for" followed by a "loop parameter
specification" followed by a sequence of statements enclosed by the keywords
"loop" and "end loop".

Example 39: For Statement Syntax

for-statement :- for loop-parameter.spec loop
sequenceof-statements

end loop;

loop.parameter-spec ::= Identifier In [reverse] discreteJange

The sequence of statements of the for loop Is sometimes referred to as its
body.

The loop parameter specification consists of an identifier followed by the
keyword "In" followed by a discrete range optionally preceded by the keyword
"reverse".

The keyword "reverse" causes the loop parameter to take on values of the
discrete range in the reverse order. Thus the following program computes the
sum '564+3+2+1"

Example 40: Reverse For Statement

SUM :z 0;
for I in reverse 1.. loop

SUM:= SUM + 1;
end loop;

1-. the present example the keyword reverse does not affect the result of the
computation, although it does affect the sequence of intermediate values taken by
SUM during execution of the loop.

One of the most important applications of for statements is to iterate over the
sequence of components of an array. The declaration of arrays and the dse of for
statements in iterating over sequences of components of an array is discussed in
the next instruction unit.

Which of the following assertions are false?

a) The sequence of values taken by SUM is 0 6 9 12 14 15.
b) If + were changed to * the computed value would be 120.
c) The reverse of a discrete range is always a discrete range.
d) The keyword reverse has no effect on the value computed by a for statement.
e) The implicit type of I is the element type of the discrete range.

S)DAPFT, 0 October 1983

• - ~~~~.-. . .. %'°

44

Concept Map for Unit 6: .Arrays

The purpose of this unit is to introduce array types, array objects, and the
use of for statements to iterate over array objects.

The relation among concepts introduced in this section is as follows:

an"onymous types named types)

-uncnstrai tconsrained types

/..._bject declarations

comtentsj sices ,(agregates) attributes

Figure 7: Concept Map for Arrays

We start with anonymous array object declarations and illustrate assignment
to array components, iteration over array components, and assignment of array
aggregates to array variables.

We then introduce array type declarations and contrast the declaration of
anonymous array objects with the declaration of array objects of a named type.

Array attributes are ntroduced and used to define the range of for statements
for iterating over arrays.

Arrays whose index range is an enumeration type are illustrated.
Assignment of array aggregates to array variables and to slices is discussed.

Unconstrained array types whose range is specified at declaration time are
Introduced. The use of unconstrained array types as parameters of functions is
illustrated.

(DAPTu 10 October 2983

.....................................

46

6.1. Introduction to Arrays
An array Is a composite object consisting of a sequence of component objects

all of which have the same type. An array with five components of the type
INTEGER may be declared as follows:

A: array (1..5) of INTEGER; -- array object with 5 integer components

Components of the array A are denoted by composite names A(I) where I is an
Index value in the range 1 ..5. They have the status of variables of the type
INTEGER, and may occur on either the right or left-hand side of an assignment
statement.

A(1) - 17; -- assign 17 to array component A(1)
A(4) : 2 * A(1); -- assign 34 to array component A(4)

In dealing with arrays we often want to perform similar operations on suc-
cessive components of an array. The for statement is a control structure specifi-
cally designed for this purpose.

Example 41: Iteration over Array Elements

for I In 1 ..6 loop -- the array specifications 1..5 of this loop
A(I) := 0; -- corresponds to the Index range

and loop; -- of the array A

This for statement makes use of the index range 1_5 of the array type as its
range specification.

In addition to assigning values to array components, Ada also permits direct
assignment of values to a complete array.

A: : (7,6,5,4,3); -- assignment of array aggregate to array variable

The expression (7,6,6,4,3) is called an array aggregate. Array aggregates are
representations of array values in precisely the same sense that Integer literals are
representations of Integer values. The assignment statement "A := (7,6,5,4,3);"
assigns the value represented by the composite literal (7,6,5,4,3) to the composite
object A.

Which of the following assertions are false?

a) "array (1..5) of INTEGER;" has an Index range "1."
b) The components of A are A(1), A(2), A(3), A(4), A(5).
c) Array aggregates may be assigned as values to array literals
d) A(2) is a variable of the type INTEGER.
e) For statements are designed to facilitate iteration over array data structures.

()D A,PT 10 Oc~osr 1983

-. o........................ ..-.-....- •..... -
. •. % ." ..." .. "% - "- -.- " o. °. .--. % -. . .

46

6.2. Type and Object Declarations for Arrays

The declaration "A: array (1..5) of INTEGER;" associates the array object A
directly with a type definition. It is called an anonymous array declaration
because It does not use a type name in declaring the array object A.

Array objects introduced by anonymous declarations are always of different
type.

Example 42: Anonymous Object Declarations

A: array (1..5) of INTEGER; -- A and B are of different anonymous types
B: array (1-5) of INTEGER;
C, D: array (1.6) of INTEGER; -- even C and D have different types

Instead of declaring an array object directly we can declare an array type

from which array objects may be subsequently created by object declarations.

type ARRAY-TYPE Is array (1 ..6) of INTEGER;

This type declaration serves to associate a name with the type definition
'array (1..5) of INTEGER;". Array objects having the index range and component
type of this type definition can be defined as follows:

Example 43: Named Array Type Declarations

A: ARRAY-TYPE; -- A and B are of the same type
B: ARRAY-TYPE;
C,D: ARRAY-TYPE; -- C and D are of the same type as A and B

Array objects of anonymous type avoid the overhead of introducing an expli-
cit type name and are useful in applications involving computation on a single
array in a single program module. But computation that requires several arrays of
the same type or that requires the transmission of array parameters between pro-
gram modules requires array objects to have a named type.

Which of the following assertions are false?

a) Arrays Introduced by different anonymous declarations always have a different
type.
b) Array type declarations associate a name with a type definition
c) "A: array (1.5) of INTEGER;" declares an array object of anonymous type.
d) Having the same index range and component type is a necessary but not suffi-
cient conditions for two array objects to have the same type.
a) Arrays passed as parameters between program modules cannot have an
anonymous type definition.

)DRAMI 10 O*br 1983

.~~~~~

I
47

6.8. Array Attributes
In performing computations on an array it Is sometimes useful to refer to

properties of the array data structure. Such properties are called array attributes.
Three useful attributes of the Index range of an array object are its first value,
last value, and range. " "'

A'FIRST -- first value in Index range of the array A
AILAST -- last value In Index range of the array A p
A'RANGE -- Index range of the array A

Array attributes are denoted by composite names consisting of an array name
followed by an apostrophe followed by an attribute name. They have the same
syntax as type attributes but are associated with array objects rather than with
types. The values of array attributes come into existence when the object
declaration for the array is executed and cannot be modified by assignment. They
can be used to determine properties of the array such as the number of its com-
ponents.

SIZE-OFA :u A'LAST - A'FIRST + 1; -- number of components of A

The range attribute of an array can be used as the range specification of a for
statement. The example below assumes that the components of A have previously
assigned values.

Example 44. Using the Range Attribute

SUM := 0;
SUMSQ : 0;
for I in A'RANGE loop

SUM -a SUM + A(l);
SUMSQ:: SUMSQO A(I) A(I);

and loop

The use of A'RANGE allows the programmer to specify iteration over the
sequence of components of an array without explicit knowledge of the index
range or number of elements.

Which of the following assertions are false?

a) The number of index values in AIRANGE is AILAST-A FIRST.
b) A'RANGE is a read-only attribute.
c) Iteration ov-. A'RANGE allows the programmer to sum all elements of an array
without actually knowing how many there are.
d) The components of A must be assigned values before their sum can be com-
puted.
e) The value of SUM will be 25 after execution of the for loop.

0 . 0 .1 8

.

48

6.4. Index Ranges of Enumeration Types
The index range of an array need not be a range of Integers. It may be any

discrete range, including the value set of an enumeration type.

The index range of the array type HOURS-WORKED is the days of the week.

type DAY Is (MON, TUE, WED, THU, FRI, SAT, SUN); -- an enumeration type type
HOURS-_tWORKED is array (DAY) of FLOAT; -- an array type

This array type may be used as a basis for defining array objects that record
the number of hours worked by employees in a company.

SMITH, JONES: HOURSJAORKED; -- array objects with Index range DAY

The components SMITH and JONES can be initialized by assignment:

SMITH(MON) :z 7.5; -- assign value to MON component of SMITH
JONES(SAT) : 4.3; -- assign value to SAT component of JONES

The total number of hours worked by SMITH and JONES can be computed by a
for loop which iterates over the index range DAY.

Example 46: Summation over an Enumeration Range

SUM.SMITH:= 0.0;
SUMJONES := 0.0;
for D In DAY loop

SUM-SMITH :z SUM-SMITH + SMITH(D);
SUMJONES : SUM-JONES JONES(D);

end loop;

This for statement uses the index range of the array type of SMITH and JONES
as its range specification. Since SMITH and JONES both have the same index range
DAY we can perform summation for both arrays in the same for loop.

Which of the following assertions are false?

a) The array object SMITH has the range MON.. SUN.
b) SMITH(MON) is a variable of the type FLOAT.

i- c) SMITH is an array with seven components.
d) SMITH and JONES have the same index range and element type but may have
different values.
e) The index variable D ranges over a sequence of integers.

(DRAFT. 10 October 1983

I1

49

6.6. Aggregates, Slices, and Complete Arrays
Ada has a variety of facilities for operating directly on arrays and subarrays

which encourage the programmer to think of arrays as single data objects rather
than as collections of components.

Literals which represent values of complete arrays are called array aggre-
gates. Array aggregates may be assigned to array variables of compatible type in
much the same way that Integer literals are assigned to integer variables. -

A :: (7,6,5,4,3); -- assign array aggregate to array variable

Array variables may appear as operands on both the right and left hand side
of an assignment statement.

B -A; -- B Is assigned the value (-7,-6,-5,-4,-3)
B = 2 * A; -- B is assigned the value (14,12,10,8,6)

Ada allows the meaning of - and * to be extended to arrays. Unary minus
causes negation of all the elements of the array, while multiplication by a scalar
causes all elements to be multiplied by the scalar. The extension of operators to
operands of a new type is called overloading.

Aa allows us to treat subarrays of contiguous components of an array as
composite variables having the same status as complete arrays.

A(2..4) -- subarray consisting of A(2), A(3), A(4)

The subarray A(2..4) is called a slice of the array A. Slices may appear as
operands on both the left and right hand sides of an assignment statement.

A(1..2) :(35, 17); -- assign the aggregate (35, 17) to the slice A(1..2)
A(4..5) : 2 * A(1..2); -- assign the aggregate (70,34) to the slice A(4..5)

Which of the following assertions are false?

a) The composite literal (1,2,3,4,5) may be assigned as a value to the -omposite
array object A.
b) Arrays may appear as operands of arithmetic operators.
c) Arithmetic operators may be overloaded to operate on arrays and slices.
d) A slice is a contiguous subsequence of components of a one dimensional array.
e) The assignment A(2..4) :: A(4..5); is legal because all slices of an array have
the same type.

QDRAMPT 10 o o r 1983

. . . .- -

60

6.6. Unconstrained Array Types
Ada allows the index range of an array type to remain unspecified in an array

type declaration so that it can be defined separately for each object of the type.

type VECTOR Is array (INTEGER range <>) of INTEGER;

The type VECTOR is called an unconstrained array type. Its Index range
specification "INTEGER range <>" indicates that the index range of objects of the
type will be a subrange of the integers, but allows the actual subrange to be speci-
fied at object declaration time rather than at the time the type is declared.

V: VECTOR(1..6); -- V has Index range 1.., five components
W: VECTOR(1..1O); -- W has Index range 1.10, ten components

The use of unconstrained array types may be Illustrated by the function
VECSUM which has a parameter of the type VECTOR and returns the INTEGER sum
of the components of the vector as a result.

function VECSUM(X: VECTOR) return INTEGER;

Since VECTOR is unconstrained VECSUM can be called with vectors of dif-
ferent sizes.

X :a VECSUM(V) -- sum the components of the five-element vector V
Y :a VECSUM(W) -- sum the components of the ten-element vector W

This function would be much less useful if the type VECTOR were con-
strained to include only vectors of a given size. In this case it would be necessary
to define separate functions for ten component and eleven component vectors.

There are many other applications, such as sorting and linear algebra, where
the ability to write subprograms that operate on arrays of different size is essen-
tial. If we adopt the Ada principle that all parameters are of a fixed :ype the con-
cept of type must be sufficiently broad to allow a single type to include arrays of
different sizes.

Pascal suffers from the fact that its concept of an array type is too inflexible.
In Pascal two arrays with different index ranges cannot have the same type and
subprograms that sum or sort arrays of arbitrary size are accordingly difficult to
define. The Ada concept of unconstrained array types was developed in part as a
response to this deficiency of Pascal.

Note: The unconstrained array type VECTOR may be thought of as a parameterized
type. The specification "INTEGER range (>" plays the role of a formal parameter
In the type declaration. It is bound to actual parameters such as 1..5 or 1..10 at
object declaration time.

Which of the following assertions are false?
a) The type VECTOR has an unspecified index range.
b) Objects of the type VECTOR may be arrays of different sizes.
c) Functions with an unconstrained array parameter may be called with actual
parameter arrays of different sizes.
d) "K :a VECSUM(V) + VECSUM(W);" assigns to K the sum of the sums of V and W.
e) In Pascal vectors with different index ranges have different types.

D(AF~s 10 October 1983

61

Concept INp for Unit 7: Subprograms and Parameters Passing
The purpose of this unit is to consolidate concepts relating to subprograms

and parameter passing, as indicated in the following concept map.

(subprograms)

fuction which return values rp-ocedures which have side effects

a ar aranee) parameter modes)

(subprgrams hich call other subprogramns

-sytaxof subprogras. .

Figure 8: Concept Map for Subprograms and Parameter Passing

We start with a function for summing components of an array. It has an
unconstrained array as a parameter so that actual parameters can be arrays of dif-
ferent sizes on different instances of call.

An alternative implementation by a procedure is presented which requires an
extra parameter for storing the the value of the computed sum. We demonstrate
that summation is more naturally implemented by a function than by a procedure.

The parameter modes In, out and In out are introduced. The In out mode is
Illustrated by a swap procedure. Swapping is more naturally implemented by a S
procedure than by a function.

A MAX.JNDEX function is defined for finding the maximum of a set of vector
components. A SORT procedure is then defined which calls the previously defined
SWAP and MAX.JNDEX subprograms in sorting the components of its array parame-
ter. I

The SORT subprogram is our first example of a relatively non-trivial compu-
tation. It brings together almost all the language features we have learned so far
and illustrates them In the context of a single subprogram. The SORT subprogram
Illustrates expressions, statements, If and for statements, functions, subprograms,
array parameters, and slices.

Sorting is a good example both because it brings what we have learned so far

Into focus and because it is a very widely used practical application. The reader
who has persevered to this point has mastered most of the basic language ideas of
predecessors of Ada and is ready to start learning about more advanced language
features.

0 DRAP?, IVOloaber 1983-< - -.. -. . .o-..

_. _ _. _ -_,, , :_ , -_, ~~~~~~~~~~. j.-.....-.,-" -......... ..-.. , .,.. ,-. -.. , ..-- ,

62

7.1. Function for Summing the Elements of an Array

The function VECSUM below has a parameter V of the unconstrained array
type VECTOR and may be called to sum vectors of different sizes.

Example 46: Function for Summing Elements of a Vector

function VECSUM(V:VECTOR) return INTEGER is -- VECTOR parameter
S : INTEGER "= 0; -- local variable 8, Initialize to 0

begin -- the statement sequence
for I In V'RANGE loop -- loops over actual parameter

S :8 S * V(); -- adding values to S
end loop;
return S; -- and returns with value of S

end SUM;

The index range VIRANGE of the for loop is determined by the actual parame-
ter at the time of function call.

A call of VECSUM for an actual parameter A has the following form:

SUMI :a VECSUM(A); -- call of VECSUM with actual array parameter

This call of VECSUM with the actual array parameter A causes both the values
of the array and its index attributes to become accessible. VECSUM will compute
the sum of components A(I) in the range A'RANGE. The number of times the for
loop is executed will depend on the number of components of A.

The following statement contains two calls of VECSUM for summing two dif-
ferent vectors A and B which may in general have different numbers of com-
ponents.

SUM2 := VECSUM(A) + 2 * VECSUM(B); -- two calls of VECSUM

Calls of VECSUM return a value of the type INTEGER and may be used in an
expression wherever an integer variable or integer literal may occur.

Which of the following assertions are false?

a) Calls of VECSUM return a value of the type INTEGER.
b) V is a formal parameter whose actual parameter values may be arrays of dif-
ferent sizes on different instances of call.
c) V'RANGE s a formal range whose actual range is determined by the index range
of the actual parameter.
d) The type of S must be the same as the type of VECTOR.
a) If 8 :: 8 + V(i); were changed to S := S + V(I) * V(I); the function VECSUM
would compute the sums of squares of its actual parameter.

.. 10 1

63

7.2. A Procedure for Summing Vectors
Let's see what would happen if we used a procedure rather than a function to

sum the components of a vector.
Procedure calls do not return values on return from a procedure call. How-

ever they may have output parameters that allow values computed during execu-
tion of the procedure to be stored externally and used after execution of the pro-
cedure is completed. The procedure PROCSUM has an output parameter S (of the
mode out) in which the computed sum may be stored prior to return from the pro-
cedure.

Example 47: Procedure which Computes Vector Sum

procedure PROCSUM (V:VECSUM; S: out INTEGER) is -- extra output parameter
TEMP: INTEGER:= 0; -- TEMP is used to accumulate the sum

begin
for I In V'RANGE loop

TEMP :z TEMP + A(I);
end loop;
8 :m TEMP; -- assign computed sum to the output parameter

end PROCSUM;

Procedures are terminated by executing a return statement or when control
reaches their end statement. This occurs after executing "S := TEMP;" in the
present procedure.

The procedure PROCSUM may be called as follows:

PROCSUM(A, SUM); -- store computed sum of A In variable SUM

The sum of components of a vector is more naturally specified as a function
than a procedure because the sum may naturally be thought of as a value. How-
ever for subprograms whose computational effect is not that of computing a
value, procedures may be a more natural form of specification.

PROCSUM modifies its environment by storing the computed sum in its out-
put parameter. Such modification of the environment is called a side effect.
Functions do not need to have side effects because they can achieve their effect by
returning a value that may be used in an expression for further computation.
Procedures cannot return a value and can affect subsequent computations only by
means of side effects.

Which of the following assertions are false?

a) Procedures can perform any computation performed by functions.
b) Functions are more natural than procedures for performing certain computa-
tions.
) The call PROCSUM(A, SUM); has a side effect which modifies the variable SUM.

d) The call PROCSUM(A, SUM); has a side effect which modifies the array A.
a) If A has zero components then PROCSUM(A, SUM); assigns zero to the variable
SUM.

0DRAf, IOOaober 1983

64

7.3. Parameter Modes
Formal parameters of subprograms have both a type which specifies its appli-

cable operations, and a mode which specifies the manner in which values are com-
municated between the calling and the called program.

There are three parameter modes, In, out, and In out.

Example 48: Parameter Modes

in The formal parameter Is a constant and permits only reading of the
associated actual parameter

out The formal parameter Is a variable and permits updating of the
value of the associated actual parameter. If the actual parameter
Is not updated during a given call its value is undefined.

in out The formal parameter is a variable and permits both reading
and updating of the associated actual parameter.

S

The procedure SWAP below has parameters of the mode "in out" because
swapping of two variables requires both reading and updating of the variables.

Example 49: Swapping of Two Variables

procedure SWAP(X,Y: In out INTEGER) Is -- two parameters of mode in out
LOCAL: INTEGER; -- with a local variable

begin -- and a sequence of statements
LOCAL := X; -- which uses LOCAL for temporary storage
X :z Y;
Y :: LOCAL; -- In interchanging the values of X, Y

end SWAP;

Note that the swap procedure modifies its environment but does not compute
any result that is naturally thought of as a value. It is therefore more naturally P
defined as a procedure than as a function.

.4

Which of the following assertions are false?

a) Parameters of the mode In cannot be updated.
b) Parameters of the mode out must be variables.
c) Parameters of the mode In out can be used for both input of data on entry to the
subprogram and output of results on exit from the subprogram.
d) The call SWAP(A(l), A(J); interchanges the values of the Ith and Jth com-
ponents of A.
e) The call SWAP(3, 5); interchanges the values 3 and 5.

)DRAPT, 10 October 1983

. . .• -.-. .

. -. ._ -. ,..:. . -. :. - .- -.-.-. _ .

65

7.4. Computing the Maximum

Finding the maximum of the components of a vector requires a loop with a
more complex structure than that required to sum the components of the vector.

Example SO: Finding the Maximum of a Vector

MAX := V(1); -- initialize MAX to V(1)
for I in 2..10 loop -- and compare successive components against MAX

if V() > MAX then -- if current V(i) greater than MAX so far
MAX := V(I); -- assign new largest value to MAX

end if; -- otherwise leave old maximum value
end loop; -- exit when discrete range exhausted

MAX is used to keep track of the maximum value found so far. It is initially
set to V(1) and is replaced whenever a component greater than its current value is
found. This ensures that at any intermediate point of the computation MAX is the
maximum of the components examined so far, and that it is the maximum of all
components at the end of the computation.

The value of MAX provides us with a knowledge of the maximum value but
not with the position of the maximum component in the vector. In order to
determine the position we may compute the index of the maximum value.

Example 5 1: Index of Minimum Vector Element

INDEX := V'FIRST; -- initialize INDEX to first Index value
for I in V'RANGE loop -- V(INDEX) will hold maximum vale so far

If V(l) > V(INDEX) then -- if current V(l) > max so far
INDEX I; -- set INDEX to new largest value

end If; -- otherwise leave old max Index value
end loop; -- exit when all Index values are examined

INDEX is initially set to the index of the first component and is updated
whenever the new component value is greater than all previous values. On com-
pletion, INDEX will contain the index of the maximum element.

Which of the following assertions are false?

a) MAX is initialized to the value of the first component of V.
b) MAX Is updated whenever a new value is greater than all previous values.
c) Both programs compute the value of the maximum of the vector V.
d) Both programs contain an if-then statement nested in a for statement.
e) For a given vector V the number of times "MAX :- V(I);" is executed in the first
program is equal to the number of times "INDEX : I;" is executed in the second
program.

-. 1

66

7.6. Maximum Index for Arrays and Slices
A function for computing the index of the maximum element of a vector can

be defined as follows.

Example 52: MAXJNDEX Function

function MAXJNDEX(V:VECTOR) return INTEGER Is -- function specification
INDEX: INTEGER := V'FIRST -- local variable INDEX Initialized to V'FIRST

begin -- beginning of statement sequence
for I in V'RANGE loop -- for I In range of vector parameter

1 V() > VONDEX) then -- if currenh V(i) > maximum so far
INDEX := I; -- assign new maximum Index

end if; -- otherwise leave old maximum index
end loop; -- exit loop when all index values examined
return INDEX; -- return with value of maximum index

end MAXJNDEX; -- end of function MAXJNDEX

The usefulness of returning the index of the maximum element of a vector
rather than the maximum value itself is illustrated by the following program
fragment for interchanging the values of the first element and maximum element
of a vector.

Example 53: Interchange Maximum Element with First Element

K := MAXJNDEX(A); -- assign maximum index of A to K
TEMP:: A(K); -- store maximum value in TEMP
ACK) : A(1); -- place A(1) in old maximum position
A(1) TEMP; -- store maximum value as A(1)

Calls of MAXJNDEX with parameters that are slices of an array A are illus-
trated below.

MAX.JNDEX(A(I..J)) -- compute MAXJNDEX of the slice A(I..J)
MAX.JNDEX(A(I..A'LAST)) -- A(I..AILAST) is a "terminal" slice of A

In the next frame we shall discuss an algorithm for sorting by finding the
maximum of a sequence of slices of the vector being sorted.

Which of the following assertions are false?

a) The formal parameter of MAXINDEX is an unconstrained array.
b) The number of times the for loop Is executed depends on the component type of
the actual parameter.

) The statement "A(MAXJNDEX(A) := 0;- replaces the maximum component of A
by zero.
d) The actual parameter of MAXJNDEX can be a slice of an array of the type VEC-
TOR.
e) "A(Q.A'LAST)" Is a slice whose last component Is the last component of A.

)DRAPT: 10 Ochober 19a3

...........

67 S

7.6. Sorting by Successive Maxima
Let's illustrate sorting by succesr re maxima by showing how the five com-

ponent vector "3 1 7 6 5" is sorted Into the vector "7 6 5 3 1".
We first find the Index "3" of the maximum "7" of "3 1 7 6 6" using the

MAX.JNDEX function. The first and third components are interchanged, yielding
the vectorT 1 6 5.

This ensures that the maximum component is In the first position and we
have reduced the problem to finding the maximum of the slice A(2..5) consisting

of the four components 1 3 6 5. The maximum index of this slice is 4. Inter-
changing the second and fourth elements yields 7 6 3 1 6.

Finding the maximum index of A(3..S) and interchanging the maximum and
third element yields 7 8 5 1 3.

Finally, finding the maximum index of A(4..5) and interchanging the fourth
and fifth elements yields the completely sorted sequence 7 6 5 3 1.

A sorting procedure which realizes this algorithm for vectors with integer
elements Is given below. The MAX)JNDEX function is used to find the maximum-
of successive slices A(I..A'LAST), and the procedure SWAP Is used to Interchange
the maximum element of each slice with the first element of the slice.

Example 64: Sort Procedure

procedure SORT(A:in out VECTOR) Is -- specification of SORT procedure
K: INTEGER; -- local variables K, TEMP

begin -- beginning of statement sequence
for I in A'RANGE loop -- for I In range of vector A

K : MAXJNDEX(A(I..A'LAST)); -- find max Index of slice
SWAP(A(I), A(K)); -- swap with first component

end loop; -- exit from loop
end SORT; -- and SORT procedure

Our sorting algorithm has an inner loop which swaps the Ith component
with the maximum of the slice A(I..A'LAST) for successive values of I in A'RANGE.

Note: The two statements in the inner loop of this program could be replaced by
the following single statement.

SWAP(A(I), A(MAXJNDEX(A(I..A'LAST)));

This would eliminate the need for a temporary variable K, and would result
In a shorter program. But the resulting program would be more difficult to under-
stand than the programs in our example.

Which of the following assertions are false?

a) Sorting involves both reading and updating of the vector being sorted.
b) The number of components in A(h.A'LAST) increases as I increases.
c) SWAP(A(I), A(K)); swaps the first and maximum components of A(I..A'LAST).
d) SORT is defined in terms of the subprograms MAXJNDEX and SWAP.
e) SORT may be used to sort vectors of different size and type.

O DRAPT 10 October 1983

". ."7. - . ..

rp

68

7.7. Syntax of Functions and Procedures
Both procedures and functions are subprograms consisting of a subprogram

specification followed by a declarative part followed by a sequence of statements
enclosed in begin - end parentheses.

Example 65: Structure of Subprograms

subprogram ::= subprogram-specification is
declarative-part

begin
sequence_.ofLstatements

end [subprogram.Jdentifier];

Procedures and functions have a similar structure in their declaration part
and statement part but differ in their subprogram specification.

subprogram.specification ::a
procedure identifier [formaLpart] I
function designator [formaL-part] return type-.nark

Syntactic differences between functions and procedures include the fact that
functions require the keyword return and a type mark such as INTEGER following
the parameter specification. Function names are richer than procedure names
since designators include operator symbols as well as identifiers.

designator ::= identifier I operator-symboI

The formal parameter part of procedures and functions Is similar, consisting
of a sequence of formal parameter specifications separated by semicolons and
enclosed in parentheses.

formaL.part ::: (parameter._spec J; parameter.spec i)

A parameter specification is an identifier list with associated mode and type
that may optionally be initialized to an expression.

parameter._spec :: identifier-list : [mode] type.-mark [:: expression]
type.-mark ::: type-name I subtype-name

The above syntax definitions have a few undefined terms such as "expres-
sion", "subtype name", etc. These have been left undefined because portions of
the language required to make sense of these definitions have not yet been com-
pletely covered.

Which of the following assertions are false?
a) Procedure and function declarations have the same syntax.
b) INTEGER is a type mark.
c) + may be a function name but not a procedure name.
d) I,J: INTEGER :z 0 is a valid parameter spec.
a) Functions need not have parameters but must return a result.

(DRAM~ 10 Octobgr 1983

59

Answer Key

Note on the Role of Assertions

The assertions at the end of each frame are a mechanism for teaching rather
than testing. They provide an opportunity to make additional true statements
about the material In each frame. The search for false assertions provides an
incentive for careful reading that enhances the learning process. Generally there
is just one false assertion. But occasionally there is none or more than one Just to
keep the reader honest.

Assertions serve to consolidate and review previously presented material.
They are Intended to be easy rather than mind-stretching, and to build up the
confidence of the reader in using Ada terminology. At this early stage of learning
Ada, practice in using Ada terminology is as important as writing Ada programs.

Reviewing the answers is an important part of the learning process. Looking
up the answer confirms not only the falsity of false assertions but also the truth
of true assertions. Answers occasionally discuss issues that go beyond the
material presented in the frames. Such discussions could be augmented in subse-
quent drafts of the material as experience is gained concerning points readers
wish to see discussed.

Answers for Unit 1: Lexical Elements

1.0. Warming-up Exercise
d) Rules of semantics determine the "meaning" of programs.
Discussion: Meaning is an elusive concept which cannot be precisely defined. As a
first approximation we can think of the meaning of a program construct as its
computational effect. Thus the meaning of the expression "X+Y" is the relation
between values of X,Y and the value of "X+Y". The meaning of a function such as
SQRT(X) is similarly determined by the relation between values of X and values of
the result that is computed for each value of X.

1.1. The Ada Character Set
d) The character string "3.1416" contains six characters. Five are digits and one
is a special character.

1.2. Lexical Elements and Separators
c) Extra spaces do not change the effect of a program. However in cases of ambi-
guity at least one space Is necessary. Thus in "if X = Y then ... " at least one space is
needed between If and X and between Y and then.

1.3. Identifiers
d) Predefined identifiers such as INTEGER can be redefined by the user. Only
reserved identifiers cannot be redefined.
Discussion: It is inadvisable to redefine predefined identifiers without good rea-
son. Thus the predefined type INTEGER should never be used as the name of a
variable. But INTEGER could be redefined if there are strong reasons for ntegers
to have a precision other than the standard implementation-defined precision.

For function identifiers such as SORT new meanings can be added without
invalidating previous meanings. Thus if SORT is defined in the library only for
floating-point numbers of standard precision then a new definition of SORT for
numbers of double precision does not invalidate the previous meaning. Adding
new meanings of an identifier without Invalidating previous meanings is referred
to as overloading.

(P A 10 Ocber 1983
..°I o

,o'%°.',.°_.."°..- . °.°. " °. °° .°.... °- " .' . .-. °% '.--°-°.. .-..-'°°. '° °°° -'.

60

1.4. Numeric Literals
a) 1/10000 is greater than 1 100000.

1.6. Character and String Literals
d) "I think therefore I am" has 22 characters. 18 are letters and 4 are special char-
acters.

1.6. Comments
c) Comments are useful during program maintenance. Their removal does not
Increase program efficiency.

1.7. Positional Number Representation
b) The value of a digit in positional number representation depends on its base. If
the base is n, then each digit position to the left is worth a factor of n more than
its right neighbor.

1.8. Based Literals
c) 15#EF# is illegal since F has no meaning in base 15. The hexadecimal digit F
stands for 15 base 16, but has no meaning in numbers with a lower base.
Numbers in base N can contain only the digits 0,1,...,N-1.

L
Answers for Unit 2: Syntactic Notation

2.1. Productions which name sets of characters.
e) If the sets associated with X and Y overlap, then XIY will have fewer elements
than the sum of X and Y. Thus if X ::= AIB and Y::= BIC then XIY is the three-
element set JAB,Cl.

Note that the number of elements in XlY is always less than or equal to the
sum of the number of elements in X and Y.

2.2. The Concatenation Operator
c) If X has M elements and Y has N elements then X Y has M * N elements. Thus, if
one of the two sets associated with X and Y is empty, then the set X Y will be
empty. If X has a single element and Y has at least one element then the number
of elements in X Y will be equal to the number of elements n X. The number of
elements in X Y Is greater than the number of elements in X and Y only if both X
and Y have more than one element.

2.3. The Syntax of Integers and Identifiers
d) The production abc-string ::z aIbIci asserts that abc-string consists of an arbi-
trary number of as, bs, and cs.

2.4. The Syntax of Numeric Literals
This frame has two false assertions:
d) Neither 2#FF# nor 3#FF# are valid based literals.
e) The based literal 3#0.1 #, which has the value one third, cannot be represented
by a finite decimal literal.

(DAAT, 10 October 1983

p

61

Answers for Unit 3: Expressions, Statements, and Declarations

3.1. Integer-Valued Expressions
c) (4*3)**2 a 12**2 a 144, while 4*(8**2) a 4*9 86.

3.2. Expressions and Variables
a) When I z 3 and J z 4, l**J z 3**4 z 81 and J**I : 4**3 : 64.

3.3. Assignment Statements and Memory Cells. P
none

3.4. Object Declarations
b) The declaration of a variable creates an object and associates It with a declared
identifier. But declarations such as 1: INTEGER; leave the variable I uninitialzed.

Ada permits variables to be initialized at their point of declaration by declara-
tions such as 1: INTEGER:: 0;.

3.5. Blocks with Local Variables
d) Variables in a block may include both local variables declared in its declaration
part, and non-local variables declared in outer layers of the program.

3.6. Parameterless Procedures
c) I,J,K are local variables - not parameters. ASSIGN is a parameterless procedure.
The relation between parameters and local variables will be discussed later. One
of the principal differences Is that parameters are part of the user interface, while
local variables are known only within the procedure.

3.7. Review of Declarations and Statements
b) Computational entities declared locally within a procedure come into existence
when the procedure is called during execution, and disappear when execution of
the procedure is completed. Each call of the procedure has its own copy of local
entities.

Answers for Unit 4: Introduction to Types

4.1. Floating-Point Variables
b) Floating-point and integer variables cannot be inherently distinguished by
their syntactic form. However, for any given occurrence of a variable in the pro-
gram text it is possible to determine its associated declaration at compile time, and
thereby to determine its type.

4.2. Boolean Types
d) Since HUNGRY r TRUE and SLEEPY a FALSE, the variable C is assigned the value
TRUE.

4.3. Relational Operators and Relational Expressions
c) Relational expressions can be assigned as values of Boolean variables, but not as
values of INTEGER variables.
4.4. Programmer-Defined Types

) The statement N :z N + 100; is not syntactically llegal. We cannot determine

at compile-time whether the result of executing N :z N + 100; satisfies the con-
straints for SHORT.JNTEGER. A run time check Is needed to compute if this state-
mert assigns an acceptable value to N.

ODlPji", to Oioaber 1983

• ° . ~ ~ ~ ~ ~~. - o o . , , " . ° " • " . .° " . " ,°. ' ' '

62

4.5. Enumeration Types
b) Enumeration literals may be identifiers or character literals. Enumeration
literals such as MON are syntactically indistinguishable from identifiers. Thus
statements such as X := MON; will cause assignment of the literal MON if X is an • -. .

enumeration type, and assignment of the value of the variable MON if X Is a vari-
able.

4.6. Scalar Types and their Attributes
d) The value of the relational expression S < T depends on the values of the vari-
ables S and T. The value is undefined when S and T are of different types.

4.7. Discrete Types and their Attributes
c) INTEGER'LAST has a predecessor which ts implementation-defined. Only
INTEGER'FIRST has no predecessor.

Answers for Unit 6: Control Structures

5.1. Sequences of Actions
b) if statements are mechanisms for choosing among alternative actions. loop
statements are the mechanism for repetitive statement execution.

5.2. If Statements
d) If A is not the maximum and B > C then B is the maximum element.

5.3. General Form of the If Statement
b) The value of a condition must be BOOLEAN (TRUE or FALSE).

t
5.4. The loop Statement
d) The variable SUM takes on the six values 0,1,3,6,10,15.

5.5. The for Statement
b) If N has the value 1 the loop will be executed once and cause SUM to have the
value 1.

5.6. Functions with Parameters
c) Actual parameters of functions may be variables of any type. However, assign- . "
ment to actual parameters is generally prohibited so that the values of variables
generally remain constant during execution of the function.

5.7. Discrete Ranges
none

5.8. Syntax of for Statements
b) The product 01*2"3*4*5 is zero, not 120.
d) The keyword reverse may in general affect the computational result of a for
loop. It makes no difference in a summation loop or in any computation where
the end result does not depend on the order in which statements of the loop are
executed. It makes a difference in the following cases:

(1) Replace SUM :a SUM + 1; by SUM :a SUM ** I; (22*33S4**5 is approximately
10*18, while 5**483*22 is approximately 10** i1).

(2) Consider loop with a single statement A(I) :z A(I1I); (ascending I has the
expected effect of shifting to the right, while descending I will cause al.
components to have the same value).

Answers for Unit 6: Arrays

ODRAFT, 10 October 2983

63

6. 1. Introduction to Arraysc) Array aggregates may be assigned as values of array variables.

6.2. Type and Object Declarations for Arrays.
None

6.3. Array Attributes
a) The number of index values n A'IRANGE is A'LAST - A'FIRST + 1.
e) The value of SUM will be 1+4+9+18+26 = 55.

6.4. Index Range of Enumeration Types
e) The index value D ranges over a space of enumeration literals.

6.5. Aggregates, Slices, and Complete Arrays.
e) Only slices with equal numbers of elements can be assigned to each other.

6.6. Unconstrained Array Types
None

Answers for Unit 7: Subprograms with Array Parameters

7.1. Function for Siming Elements of an Array
d) The type of S must be the same as the type of the components of VECTOR.

7.2. A Procedure for Summing Vectors
d) The call PROCSUM(A, SUM) modifies the value of SUM but not the value of
A.

7.3. Parameter Modes
e) The call SWAP(3, 5) is not valid because actual In out parameters must be
variables.

7.4. Computing the Maximum
c) Only the the first program computes the value of the maximum com-
ponent. The second program computes the index of the maximum com-
ponent.

7.5. Maximum Index for Arrays and Slices
b) The number of times the for loop is executed depends on the index range
of the actual parameter.

7.6. Sorting by Successive Maxima
b) The number of components of A(I..AILAST) decreases as I increases.

7.7. Syntax of Functions and Procedures
a) Function and procedure specifications differ in their syntax in several
respects. The keywords function and procedure are different. Function
names may be identifiers or operator symbols, while procedure names are res-
tricted to identifiers. Function specifications must have the keyword return
followed by the type of the object returned by the function, while pro-
cedures do not return an object.

1

()DAA~a lOcg~b, 190

....-.. ~. . . . *.- : :....*.

FILMED

1-85

DTIC

